COSE419: Software Verification

Lecture 0 — Course Overview

Hakjoo Oh 2024 Spring

Basic Information

Instructor: Hakjoo Oh

• Position: Professor in CS, Korea University

Research Areas: Software Engineering, Programming Languages

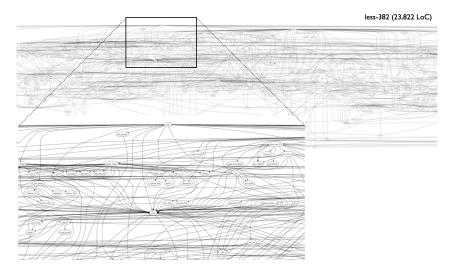
• Office: 616c, Science Library

Email: hakjoo_oh@korea.ac.kr

• Office Hours: by appointment

Course Website:

Course materials will be available in Blackboard.


Teaching Assistants:

Jisuk Byun (PhD candidate)

Donguk Kim (MS candidate)

Problem

Software is inherently complex and difficult to write, debug, and fix.

Problem

SW bugs are everywhere

Enormous costs due to SW bugs

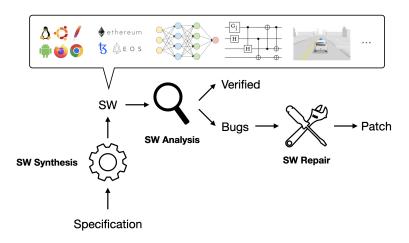
Software fail watch (5th edition). 2017

Software development cost

cf) Al-based Programming

→ 당신

Write a C program that reads a binary file containing two integers (width and height), calculates the area, and returns it.


ChatGPT

Below is a C program that reads a binary file containing two integers (width and height), calculates the area, and returns it:

```
FILE *file:
int width, height:
file = fopen("dimensions.bin", "rb");
if (file == NULL) {
fread(&width, sizeof(int), 1, file);
fread(&height, sizeof(int), 1, file);
fclose(file);
int area = width * height:
```

This course

How to correctly write, debug, and fix software?

This course

- Goal: learn principles, techniques, and tools for correct software
 - ► Topics include static and dynamic analysis, symbolic execution, symbolic verification, program synthesis, program repair, etc
- Prerequisites:
 - ► COSE212 Programming Languages, Functional programming (OCaml)
 - * https://prl.korea.ac.kr/courses/cose212/2023/pl-book.pdf
 - COSE215 Theory of Computation, COSE312 Compilers
- Grading (changed):
 - ► Attendance: 10%
 - ▶ Programming assignments: 90%
- Materials:
 - Slides will be provided
 - Reference: The Calculus of Computation. Springer

Schedule (tentative)

Weeks	Topics
Week 1	Introduction
Week 2-3	Computational logic
Week 4-5	SMT (Satisfiability Modulo Theories) solvers
Week 6-8	Program verification
Week 9-12	Static program analysis
Week 13-14	Dynamic program analysis
Week 15	Wrap up

Questions?