COSE312: Compilers

Lecture 8 — Operational Semantics

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 1/41

Semantic Analysis

token streams syntax tree syntax tree
character | Lexical Syntax Semantic L, R IR .
stream Analyzer Analyzer Analyzer Translator

Semantic analysis aims to statically detect runtime errors, e.g.,

int af10] = {...};
int x = rand();
int y = 1;
if (x > 0) {
if (x < 15) {
if (x < 10) alx] = "hello" + y;

alx] = 1;
}
} else {
y=y/x
}

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 2/41

Syntax vs. Semantics

A programming language is defined with syntax and semantics.
@ The syntax is concerned with the grammatical structure of programs.
» Context-free grammar
@ The semantics is concerned with the meaning of programs. Two
approaches to specifying program semantics:

» Operational semantics: The meaning is specified by the computation
steps executed on a machine. Interested in how it is obtained.

» Denotational semantics: The meaning is modelled by mathematical
objects that represent the effect of executing the program. Interested in
the effect, not how it is obtained.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 3/41

The While Language: Abstract Syntax

n will range over numerals, Num

x will range over variables, Var

a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
S will range over statements, Stm

a — n|x|ai+az|ai*xaz|a;—az
b — true|false|a1:a2|a1§a2|—|b|b1/\b2
S — x:=a|skip| S1;S52|if b S1 S2 | while b S

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 4/41

Example

The factorial program:
y:=1; while —(x=1) do (y:=y*x; x:=x-1)

The abstract syntax tree:

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 5/41

Semantics of Arithmetic Expressions

@ The meaning of an expression depends on the values bound to the
variables that occur in the expression, e.g., + 3.

@ A state is a function from variables to values:
s € State = Var — Z
@ The meaning of arithmetic expressions is a function:
A : Aexp — State — Z
Afa] : State »>7Z
A[ln](s) = n
Al z [(s) s(z)
Al a1 + a2](s) Al a1 |(s) + Al a2 [(s)
Al a1 x a2](s) Al a1 J(s) X A[a2](s)
Al ar —az J(s) = A[a1](s) — Al a2](s)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 6/41

Semantics of Boolean Expressions

@ The meaning of boolean expressions is a function:

B : Bexp — State — T

where T = {true, false}.

B[b]

B[true J(s)
B[false](s)
B[a1 = a2](s)
B[a1 < a2](s)
B[b](s)

B[b1 A bz](s)

State — T

true

false

Al a1 [(s) = A[az J(s)
Al a1 1(s) < Al az [(s)
B[b](s) = false

B[b1 [(s) A B[b2 (s)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025

7/41

Free Variables

The free variables of an expression are defined to be the set of variables

occurring in it:

Fv(n) = 0
FV(z) = {x}

FV(a1 —+ az) = FV(al) U FV(a2)
FV(a1 *ag) = FV(al) UFV(a2)
FV(a1 — az) = FV(CLl) U FV(CL2)

FV(true) = 0

FV(false) = 0
FV(a1 = az) = FV(a,l) U FV(az)
FV(CLl < (12) = FV(al) U FV(CL2)

FV(=b) = FV(b)
FV(bl AN b2) = FV(bl) @) FV(bz)
83035

8/41

Only the free variables influence the value of an expression.

Lemma

Let s and s’ be two states such that s(x) = s'(x) for all x € FV (a).
Then, Af a](s) = A a](s').

Proof) By structural induction on a.
@ n: Al n](s) =n=A[n](s).
@ z: Az](s) = s(z) = s'(z) = A[=](s).
@ ai + az:

Alai +a2](s) =Afa1](s)+Alaz](s) --- def.of AJa1 + a2z]
= A a1 J(s’) + Al a2 J(s’) --- Induction Hypothesis (I.H.)
= A[a1 + a2]J(s’) --- def. of A[a1 + a2]

@ aji xa2,a1 — az2: Similar.

Lemma

Let s and s’ be two states such that s(x) = s’'(x) for all x € FV (b).
Then, B[b](s) = B[b](s).

Proof) Exercise.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 9/41

Substitution

@ aly —> ag]: the arithmetic expression that is obtained by replacing
each occurrence of y in a by ag.

nly—a] = n
ag ifx =
[y — ao {a:o ifm;éz
(a1 + a2)[y — ao] = (ai[y — ao]) + (az[y — ao))
(a1 x a2)[y — ao] = (ai[y — ag]) * (az[y — ao])
(a1 — a2)[y = ao] = (ai[y — ao]) — (az[y — ao))

@ s[y —> v]: the state s except that the value bound to y is v.

v ife =y

(sly = v])(z) = { s(z) ifz#y

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 10 /41

Operational Semantics

Operational semantics is concerned about how to execute programs and
not merely what the execution results are.

o Big-step operational semantics describes how the overall results of
executions are obtained.

@ Small-step operational semantics describes how the individual steps of
the computations take place.

In both kinds, the semantics is specified by a transition system (S, —)
where S is the set of states (configurations) with two types:

@ (S, s): a nonterminal state (i.e. the statement S is to be executed
from the state s)

@ s: a terminal state

The transition relation (—) C S X S describes how the execution takes
place. The difference between the two approaches are in the definitions of
transition relation.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 11/41

Big-Step Operational Semantics

The transition relation specifies the relationship between the initial state
and the final state:

(S,s) — &
Transition relation is defined with inference rules of the form:

(S1,81) = 895+, (Sn,y8n) = s,
(S,s) — &'

i ...

e S1,...,8, are statements that constitute S.
@ A rule has a number of premises and one conclusion.

@ A rule may also have a number of conditions that have to be fulfilled
whenever the rule is applied.

@ Rules without premises are called axioms.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 12 /41

Big-Step Operational Semantics for While

B-AssN (x := a,s) — s[x — A[a](s)]

B-Ski1p (skip, 8) — s

(S1,8) — s” (S2,8") —> ¢
B-SEQ (Sl; Sa, S) — s

(S1,8) = &'

if B[b](s) = ¢t
B-IFT (it b 81 Sa,5) o & | BLOI(s) = true

(S2,8) — &
B-IrF (if bS; 52,8> — S8

; if B[b](s) = false

(S,8) — s” (while b S,s”) — s
B-WHILET (while b S,s) — s’

: if B[b](s) = true

if =
B-WHILEF (while b S,s) — s if B[b](s) = false

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 13 /41

Example

Consider the statement:
(z:=x; x:=y); y:=z

Let sg be the state that maps all variables except x and y and has

so(x) = 5 and so(y) = 7. Applying the semantics rules generates the
following derivation tree:

(z :=x,80) = s1 (x :=y,81) — 82
(z := x3% := 7y, 80) — 82 (y := z,82) — s3
((z:=x3x:=1y);y := 2,80) —> S3

where we have used the abbreviations:

s1 = So[z — 5]
s2 = si[fx— 7] = so[z+— 5,z — 7]
s3 = s2[y— 5] =so[z— 5,x— T,y — 5]

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 14 /41

Exercise

Let s be a state with s(x) = 3. Find the derivation of

(y:=1; while —(x=1) do (y:=y*x; x:=x-1),s) — s[y+— 6,z +— 1]

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 15 /41

Execution Types

We say the execution of a statement S on a state s
e terminates if and only if there is a state s’ such that (S, s) — s’ and
@ /oops if and only if there is no state s’ such that (S, s) — s’.
Examples:
@ while true do skip

@ while —(x=1) do (y:=y*x; x:=x-1)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 16 /41

Semantic Equivalence

With formal semantics, we can now rigorously reason about program
behavior, e.g., semantic equivalence.
@ S7 and S are syntactically equivalent if S; = Ss.

@ S7 and S3 are semantically equivalent, denoted S1 = S5, if the
following is true for all states s and s:

(S1,8) — &’ ifandonly if (Sa2,s) — s’

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 17 /41

Example

Lemma
For any b € Bexp, S € Stm,

while b do S = if b then (S; while b do S) else skip

Proof) To show:

Vs, s’ € State. (while b S,s) — s’ <= (if b (S;while b S) skip,s) — s’

Suppose (while b S, s) — s’ for states s, s’. Then there must be a derivation of
(while b S,s) — s’, where the final rule is either

(hile b 5,5 > 5 | BLE1(s) = false "

where s = s’ or

(S,s) — 8" (while b S,s") — s’ |
- S if B[b](s) = true
(while b S,s) — s (2)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 18 /41

@ In case (1), because B[b](s) = false, we can build the following derivation:

(skip, 8) — s
(if b (S;while b S) skip,s) — s

if B[b](s) = false

@ In case (2), the derivation must have the form:

(S,s) — s” (while b S,s”) — s’
(while b S,s) — s’

if B[b](s) = true

Using this, we can build the following derivation:

(S,s) — s” (while b S,s”) — s’
(S;while b S,s) — s’
(if b (S;while b S) skip,s) — s’

if B[b](s) = true

In either case, we obtain a derivation of (if b (S;while b S) skip, s) — s’. Thus,

Vs, s’ € State. (while b S,s) — s’ = (if b (S;while b S) skip,s) — s’

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 19 /41

Suppose (if b (S;while b S) skip, s) — s’ for states s, s’. Then there are two
possibilities:

(skip, s) — s £ Bl b — tal
(if b (S;while b S) skip,s) — 5 | [61(s) = false (3)

((S;while b S),s) — s’ .
if B[b](s) = true
(if b (S;while b S) skip,s) — s’ (4)
From either derivation, we can construct a derivation of (while b S, s) — s’. Consider the
second case, (4), which has a derivation of (S;while b S,s) — s’ of the form

(S,s) — s’ (while b S,s”) — s’
(S;while b S,s) — s’

for some state s’/. Using the derivations of (S, s) — s’/ and (while b S,s’’) — s’, we build

(S,s) — s’ (while b S,s”) — &’
(while b S,s) — s’

if B[b](s) = true

It is easy to construct a derivation of (while b S,s) — s’ from (3). Thus,

Vs, s’ € State. (while b S,s) — s’ <= (if b (S;while b S) skip, s) — s’

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 20/ 41

Semantic Function for Statements
The semantics of statements can be defined by the partial function:
Sp : Stm — (State — State)

[if (S,s) > ¢
Sl S1(s) = { undef otherwise
Examples:
o Sp[y:=1; while —(x=1) do (y:=yxx; x:=x-1) [(s[x — 3])

@ Sy while true do skip](s)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 21 /41

Implementing Big-Step Interpreter

type var = string

type aexp =
| Int of int
| Var of var
| Plus of aexp * aexp
| Mult of aexp * aexp
| Minus of aexp * aexp
type bexp =
| True
| False
| Eq of aexp * aexp
| Le of aexp * aexp
| Neg of bexp
| Conj of bexp * bexp

type cmd =

Assign of var * aexp
Skip

Seq of cmd * cmd

If of bexp * cmd * cmd
While of bexp * cmd

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 22/41

Implementing Big-Step Interpreter

let fact =
Seq (Assign ("y", Int 1),
While (Neg (Eq (Var "x", Int 1)),
Seq (Assign("y", Mult(Var "y", Var "x")),
Assign("x", Minus(Var "x", Int 1)))

)

module State = struct
type t = (var * int) list
let empty = []
let rec lookup s x =
match s with
| 0->0
| (y,v)::s’ -> if x = y then v else lookup s’ x
let update s x v = (x,v)::s
end

let init_s = update empty "x" 3

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 23/41

Implementing Big-Step Interpreter

let rec eval_a : aexp —-> State.t -> int
=fun a s >
match a with

Int n > n

Var x -> State.lookup s x

Plus (al, a2) -> (eval_a al s) + (eval_a a2 s)
Mult (al, a2) -> (eval_a al s) * (eval_a a2 s)
Minus (al, a2) -> (eval_a al s) - (eval_a a2 s)

let rec eval_b : bexp -> State.t -> bool
=fun b s >
match b with

True -> true

False -> false

Eq (al, a2) -> (eval_a al s) = (eval_a a2 s)

Le (al, a2) -> (eval_a al s) <= (eval_a a2 s)
Neg b’ -> not (eval_b b’ s)

Conj (b1, b2) -> (eval_b bl s) && (eval_b b2 s)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025

24 /41

Implementing Big-Step Interpreter

let rec eval_c : cmd -> State.t -> State.t
=fun ¢ s ->
match c with
| Assign (x, a) -> State.update s x (eval_a a s)
| Skip -> s
| Seq (c1l, c2) -> eval_c c2 (eval_c cl s)
| If (b, c1, c2) -> eval_c (if eval_b b s then cl else c2) s
| While (b, ¢c) ->
if eval_b b s then eval_c (While (b,c)) (eval_c c s)
else s

let =

print_int (State.lookup (eval_c fact init_s) "y");
print_newline ()

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025

25 /41

Small-Step Operational Semantics
The individual computation steps are described by the transition relation
of the form:

(8,8) =
where v either is non-terminal state (S’, s’) or terminal state s’. The
transition expresses the first step of the execution of S from state s.

o If v = (S’, s’), then the execution of S from s is not completed and
the remaining computation continues with (S’, s").

o If v = &, then the execution of S from s has terminated and the
final state is s’.

We say (S, s) is stuck if there is no « such that (S, s) = ~ (no stuck
state for While).

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 26 /41

Small-Step Operational Semantics for While

S-AssN (x := a,s) = s[x — A[a](s)]

S-SKIpP (skip, s) = s

(S1,8) = (51, 8")

S-SEQ1 (S13S2,8) = (S7;S2,5")
(S1,8) = &
S-SEQ2 (S1; S2,8) = (S2,5')
if =t
S-IFT (it b 5, S2,5) = (51, s) | BLE1(s) = true

S-IFF (if b S1 S2,s) = (S2,s) if B[b](s) = false

S-WHILE (while b S,s) = (if b (S; while b S) skip, s)
April 8, 2025 27 /41

Derivation Sequence

A derivation sequence of a statement S starting in state s is either
@ A finite sequence

YOy VY19 V2s° s VE
which is sometimes written
Yo =M1 =>V2 = = Yk
consisting of configurations satisfying
Yo =(8,8), Yi=>Yiy1for0<i<k
where k > 0 and g is either a terminal or stuck configuration.
@ An infinite sequence
YOos Y1y Y2y 0 0"
which is sometimes written

Yo=>T1=>Y2 = """

consisting of configurations satisfying vo = (S, s) and v; = vit1
for 0 < 3.
April 8, 2025 28 /41

Example

Consider the statement:

(z:=x; x:=y); y:=z

Let sg be the state that maps all variables except x and y and has
so(x) = 5 and so(y) = 7. We then have the derivation sequence:

((z:=x3x:=7y);y := 2,80)
= (x:=y;y:= z,80[2 — 5])
= (y :=z,80[z — 5,z — 7))
= so[z — 5,z — T,y — 5]

Each step has a derivation tree explaining why it takes place, e.g.,

(z 1= x, 80) = so[z — 5]
(z:=x5x:=1y,80) = (x:=y,50[2 — 5])
((z :=x3x:=7y)5y := 2,80) = (x:=y;y := 2, S0[z —> 5])

Hakjoo Oh COSE312 2025 Spring, Lecture 8

April 8, 2025 29 /41

Example: Factorial
Assume that s(x) = 3.

(y:=1; while —(x=1) do (y:=yxx; x:=x-1),8)

= (while —(x=1) do (y:=y*x; x:=x-1),s[y — 1])

= (if —(x=1) then ((y:=y*x; x:=x-1);while —1(x=1) do (y:=y*x; x:=x-1))
else skip, s[y — 1])

= ((y:=y*x; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1), s[y — 1])

= (x:=x-1;while —(x=1) do (y:=y*x; x:=x-1), s[ly — 3])

= (while —(x=1) do (y:=y*x; x:=x-1),s[y — 3][z — 2])

= (if —(x=1) then ((y:=y*x; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1))
else skip, s[y — 3][xz — 2])

= ((y:=y*xx; x:=x-1);while —(x=1) do (y:=y*x; x:=x-1), s[y > 3][z — 2])

= (x:=x-1;while —(x=1) do (y:=y*x; x:=x-1), s[y — 6][x — 2])

= (while —(x=1) do (y:=y*x; x:=x-1), s[y — 6][x — 1])

= s[y — 6][z — 1]

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 30/41

Other Notations

o We write 79 =" 44 to indicate that there are k steps in the
execution from ~g to .

e We write v =* 4’ to indicate that there are a finite number of steps.

@ We say that the execution of a statement S on a state s terminates if
and only if there is a finite derivation sequence starting with (S, s).

@ The execution loops if and only if there is an infinite derivation
sequence starting with (S, s).

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 31/41

Semantic Function
The semantic function &g for small-step semantics:
Ss : Stm — (State — State)

s’ if (S,s) =>*¢
undef

s[5 = {

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 32/41

Implementing Small-Step Interpreter

type conf =
| NonTerminated of cmd * State.t
| Terminated of State.t

let rec next : conf -> conf
=fun conf ->
match conf with
| Terminated _ -> raise (Failure "Must not happen")
| NonTerminated (c, s) ->
match c with
| Assign (x, a) -> Terminated (State.update s x (eval_a a s))
| Skip -> Terminated s
| Seq (c1, ¢2) -> (
match (next (NonTerminated (c1,s))) with
| NonTerminated (c’, s’) -> NonTerminated (Seq (c’, c2), s’)
| Terminated s’ -> NonTerminated (c2, s’)
)
| If (b, cl, c2) ->
if eval_b b s then NonTerminated (cl, s) else NonTerminated (c2, s)
| While (b, ¢) -> NonTerminated (If (b, Seq (c, While (b,c)), Skip), s)

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 33/41

Implementing Small-Step Interpreter

let rec next_trans : conf -> State.t
=fun conf ->

match conf with
| Terminated s -> s
| _ -> next_trans (mext conf)

let =

print_int (State.lookup (next_trans (NonTerminated (fact,init_s))) "y");
print_newline ()

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 34 /41

Equivalence of Big-Step and Small-Step Semantics

Theorem
For every statement S of While, we have Sp[S | = Ss[S]. J

Proof) By Lemma (1) and Lemma (2) below.
Lemma (1)

For every statement S of While and states s and s/,

(S,8) —» s’ = (8,s) =*s.

Lemma (2)

For every statement S of While, states s and s’ and natural number k,

(S,s) =k s’ = (S,s) — 5.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 35/41

Auxiliary Lemmas

Lemma (3)
If (S1,8) =% s’ then (S1; Sa, s) =* (S2,s’). J

Proof) Exercise

Lemma (4)

If (S13 82, 8) =F s’ then there exists a state s” and natural numbers k; and
ko such that (S1,s) =>*1 s and (Sa,s") =>*2 ', where k = ky + ko.

Proof) Exercise

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 36/41

Proofs

Lemma (1)

For every statement S of While and states s and s’,

(S,s8) = s = (S,s) =* .

Proof) By induction on the derivation of (S, s) — s’.
@ B-AssN: Assume that (x := a,s) — s[xz — A[a](s)]. From S-AssN, we get
(¢ := a, s) = s[z — A[a](s)].
@ B-Skip: Similar.

@ B-SEQ: Assume that (S1;S2,s) — s’ because (S1,s) — s’/ and (S2,s”) — s’. By
induction hypotheses (IHs), we have

(S1,8) =* s and (S2,s") =* s’.
We derive the required as follows:

(S1;82,8) =* (Sz2,s") .-+ Lemma (3) and I.H.1
=* s <o+ LH.2

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 37/41

@ B-IFT: Assume that (if b S1 S2,s) — s’ because B[b](s) = true and
(S1,8) — s’. We derive the required as follows:

(if b S1 S2,8) = (S1,8) --- B[b](s) = true
«.. |.H.

:>* S/

@ B-IFF: Similar.

@ B-WHILET: Assume that (while b S, s) — s’ because B[b](s) = true,
(S,s) — s, and (while b S, s”’) — s’. We derive the required as follows:

(while b S,s) = (if b (S; while b S) skip, s) -+« S-WHILE
= (S;while b S, s) -+« S-IFT
=* (while b S, s’’) -+« Lemma (3) and I.H.1
=* g’ <o+ LH.2

@ B-WHILEF: Assume that (while b S, s) — s because B[b [(s) = false.

(while b S,s) = (if b (S; while b S) skip, s) .-+ S-WHILE
= (skip, s) -+ S-IFF
= s -+« S-SKIP

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 38/41

Lemma (2)

For every statement S of While, states s and s’ and natural number k,

(S,8) =F s’ = (8,s) — .

Proof) By induction on the length of the derivation sequence (S, s) =>* s’ (i.e., induction on
k). Base case (k = 0): the result holds vacuously since (S, s) =0 s’ cannot hold and the
implication is true. Inductive case: we assume that the lemma holds for all k < kg for some ko
and then prove that it holds for ko + 1. We proceed by cases on how the first step of

(S, s) =>kot1 g’ is obtained.

@ S-AsSN, S-SKIP: Straightforward (and ko = 0).

@ S-SEQI, S-SEQ2: Assume that (S1; S=2,s) =*0+1 s/, By Lemma (4), there exists a
state s’/ and natural numbers k1 and k2 such that

(S1,s) =1 s and (Sq,s") =2 &

where k1 + k2 = ko + 1. The induction hypothesis can be applied to each of these
derivation sequences because k1 < kg and k2 < kg. Thus, we get

(S1,8) — 8’ and (S2,s”) — s’.

Using B-SEQ, we get the required (S1; S2,s8) — s’.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 39/41

@ S-IFT: We assume B[b](s) = true and the following derivation of length ko + 1:
(if b S1 S2,8) = (S1,s) =F0 &'
By induction hypothesis, we have (S1,s) — s’. Using B-IFT, we derive the required
(if b S1 S2,s) — &’

@ S-IFF: Similar.
@ S-WHILE: By assumption, we have

(while b 8, s) = (if b (S; while b S) skip,s) =>*0 &’
By induction hypothesis, we have
(if b (S; while b S) skip,s) — s’
Because while b do S = if b then (S; while b do S) else skip, we have

(vhile b S, s) — &’

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 40/41

Summary

We have defined the operational semantics of While.

@ Big-step operational semantics describes how the overall results of
executions are obtained.

Sp[S] : State — State

o Small-step operational semantics describes how the individual steps of
the computations take place.

Ss[S] : State — State

@ The big-step and small-step semantics are equivalent.

Hakjoo Oh COSE312 2025 Spring, Lecture 8 April 8, 2025 41/41

