COSE312: Compilers

Lecture 5 — Syntax Analysis (3): Bottom-Up Parsing

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 1/31

Expression Grammar

Expression grammar:
E—-E+E|ExE|(E)|id

Unambiguous version:

(1) £E - E+T
2) E - T

3 T — TxF
4) T — F

5) F — (E)
(6) F — id

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 2/31

Bottom-Up Parsing

o Construct a parse tree beginning at the leaves and working up

towards the root.
@ Ex) for input id * id:
id*id IF*id T*id T*F /T
id F j id IT *
F
|
d

E

|

T
71N
T*F
| I
Foid
id

@ A process of “reducing” a string w to the start symbol.

@ Construct the rightmost-derivation in reverse:

E=T=T%xF=Txid = F xid = id * id

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025

3/31

Handle

@ In bottom-up parsing, we have to make decisions about when to
reduce and what production to apply.

@ For instance, for T * id, we reduce id to F' because reducing T does
not lead to a right-sentential form.

@ Handle: a substring that matches the body of a production and whose
reduction leads to a right-sentential form.

@ A bottom-up parsing is a process of finding a handle and reducing it.

Right Sentential Form Handle Reducing Production
id; * ids idq F —id
F % idg F T —F
T * ido ido F —id
T« F TxF T—>TxF
T T E—>T

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 4/31

LR Parsing

@ The most prevalent type of bottom-up parsing.
@ Handles are recognized by a deterministic finite automaton.
o LR(k)

“L": Left-to-right scanning of the input

>
» “R": Rightmost-derivation in reverse
> “k": k-tokens lookahead

e We consider LR(0), SLR, LR(1), LALR(1) parsing algorithms.
Why LR parsing?
o Widely used:
» Most automatic parser generators are based on LR parsing
@ General and powerful:
» LL(k) C LR(k)
» Many programming languages can be described by LR grammars

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 5/31

LR Parsing Overview

An LR parser has a stack and an input. Based on the lookahead and stack
contents, perform two kinds of actions:
o Shift

» performed when the top of the stack is not a handle
» move the first input token to the stack

@ Reduce

» performed when the top of the stack is a handle
» choose a rule X — A B C,; pop C, B, A; push X

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 6/31

Example: id * id

(1) E - E+T
2) E - T
3 T — TxF
4 T —» F
(5) F — (B)
6) F — id
Stack Input Action
$ id * id$ shift
$id *id$ reduce by F — id
$F *id$ reduce by T — F
$T *id$ shift
$T id$ shift
$T « id $ reduce by F — id
$T « F $ reduce by T — T % F
$T $ reduce by E — T
SE $ shift (accept)
March 25, 2025

7/31

Recognizing Handles

By using a deterministic finite automaton. The transition table (parsing

table) for the expression grammar:

State | id + x () $ E T F
0 s5 s4 gl g2 g3
1 s6 acc

2 r2 s7 r2 r2

3 rd r4 rd r4

4 85 s4 g8 g2 g3
5 r6 716 r6 16

6 s5 s4 g9 g3
7 s5 s4 glo
8 s6 s11

9 rl s7 rl rl

10 r3 r3 r3 r3

11 r5 rb r5 rb

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025

8/31

Recognizing Handles

o Given a parse state

Stack Input
T id$

@ Run the DFA on stack, treating shift/goto actions as edges of the
DFA: 0 —» 2 > 7.

@ Look up the entry (7,id) of the transition table: shift 5. (not a handle)

© Push id onto the stack.

@ Given a parse state

Stack Input
T % id $
@ Run the DFA on stack: 0 —» 2 — 7 — 5.

@ Look up the entry (5, 8) of the transition table: reduce 6. (handle)
© Reduce by rule 6: F — id

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 9/31

LR Parsing Process

To avoid rescanning the stack for each token, the stack maintains DFA

states:
Stack Symbols Input Action
0 id = id$ shift to 5
05 id *id$ reduce by 6 (F — id)
03 F *id$ reduce by 4 (T — F)
02 T *id$ shift to 7
027 T id$ shift to 5
0275 T=xid $ reduce by 6 (F' — id)
02710 T=x*F $ reduce by 3 (T' — T * F)
02 T $ reduce by 2 (E — T)
01 E $ accept

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025

10/31

LR Parsing Algorithm

Repeat the following:

© Look up top stack state, and input symbol, to get an action.
@ If the action is
» Shift(n): Advance input one token; push n on stack
» Reduce(k):
@ Pop stack as many times as the number of symbols on the right hand
side of rule k
@ Let X be the left-hand-side symbol of rule k
© In the state now on top of stack, look up X to get “goto n”
@ Push n on top of stack
» Accept: Stop parsing, report success.
» Error: Stop parsing, report failure.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 11/31

LR(0) and SLR Parser Generation

For the augmented grammar

(0) Ef — E

1) E — E+T

2) E —» T

B T — TxF

(4) T — F

(5) F — (B

(6) F — id

construct the parsing table:

State id + * () $ E T F
0 s5 s4 gl g2 g3
1 s6 acc
2 r2 87 r2 r2
3 rd r4 rd r4
4 s5 s4 g8 g2 g3
5 r6 716 r6 16
6 s5 s4 g9 g3
7 s5 s4 gl0
8 s6 sl1
9 rl 87 rl rl
10 r3 r3 r3 r3
11 r5 5 r5 rb

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025

12/31

LR(0) Automaton

The parsing table is constructed from the LR(0) automaton:

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 13 /31

LR(0) Items

A state is a set of items.
@ An item is a production with a dot somewhere on the body.

@ Theitemsfor A - XY Z:

A — XYZ
A — X.YZ
A — XYZ
A — XYZ.

@ A — € has only one item A — ..

@ An item indicates how much of a production we have seen in parsing.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 14 /31

The Initial Parse State

@ Initially, the parser will have an empty stack, and the input will be a
complete E-sentence, indicated by item

E' — .E

where the dot indicates the current position of the parser.

@ Collect all of the items reachable from the initial item without
consuming any input tokens:

.E
E+T
T

T F
F
(F)
.id

Iy =

MRS
A A

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 15 /31

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set of
items constructed from I by the two rules:

Q Initially, add every item in I to CLOSURE(I).

Q@ If A— a.BBisin CLOSURE(I) and B — ~ is a production,

then add the item B — .+ to CLOSURE(I), if it is not already
there. Apply this rule until no more new items can be added to
CLOSURE(I).
In algorithm:
CLOSURE(I) =
repeat
for any item A — a.B3 in I
for any production B — ~
I=TU{X — .~}
until I does not change
return I

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 16 /31

Construction of LR(0) Automaton

For the initial state

&

E
.E+T
T
T x F
F

-(E)
id

Ip =

NN e
Lddidd

construct the next states for each grammar symbol.
Consider E:

@ Find all items of form A — a.E3: {E' — .E,E — .E + T}

@ Move the dot over E: {E/ - E.,E — E. + T}
© Closure it:

EI

I — — E.
1=| E - E.

+ T

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 17 /31

Construction of LR(0) Automaton

E' — .E

E —» E+4+T

E — .T
Ip=| T — .TxF

T — .F

F — (F)

F — .id

Consider (:
@ Find all items of form A — a.(8: {F — .(E)}

@ Move the dot over E: {F — (.E)}
© Closure it:

(.E)
.E+T
T

T x F
F

(E)
id

Iy =

RN
LY

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 18 /31

Exercises

E' — .E

E —» E+4+T

E — .T
Ip=| T — .TxF

T — .F

F — (F)

F — .id

e GOTO(I1,,T) =
o GOTO(Iy, F)

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 19/31

Goto

When I is a set of items and X is a grammar symbol (terminals and

nonterminals, GOTO(I, X) is defined to be the closure of the set of all

items A — aX.3 such that A —- a. X3 is in 1.
In algorithm:

GOTO(1,X) =
set J to the empty set
for any item A - a. X3 in I

add A - aX.BtoJ
return CLOSURE((J)

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025 20/31

Construction of LR(0) Automaton

@ T': the set of states

o E: the set of edges
Initialize T to { CLOSURE({S" — S})}
Initialize E to empty
repeat
for each state I in T'
for each item A — a. X3 in I
let J be GOTO(I,X)
T=TuU{J}
E=Eu{I3 5}
until £ and T do not change

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 21/31

LR(0) Automaton

Hakjoo Oh COSE312 2025 Spri Lecture 5 March 25, 2025 22/31

Construction of LR(0) Parsing Table

@ For each edge I X J where X is a terminal, we put the action shift
J at position (I, X)) of the table.

e If X is a nonterminal, we put an goto J at position (I, X).

@ For each state I containing an item S’ — S., we put an accept
action at (I, $).

e Finally, for a state containing an item A — ~. (production n with
the dot at the end), we put a reduce n action at (I,Y) for every
token Y.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 23/31

LR(0) Parsing Table

State | id 4+ * () $ E T F
0 s5 s4 gl g2 g3
1 s6 acc

2 r2 r2 r2,s7 r2 r2 r2

3 rd rd r4d rd rd rd

4 sb s4 g8 g2 g3
5 r6 76 r6 6 16 716

6 s5 s4 g9 g3
7 s5 s4 gl0
8 s6 sll

9 rl r1 r1,s7 r1 r1 rl

10 r3 r3 r3 r3 r3 r3

11 r5 Td r5 r5 r5 rb

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025

24 /31

Conflicts

The parsing table may contain conflicts (duplicated entries). Two kinds of
conflicts:

@ Shift/reduce conflicts: the parser cannot tell whether to shift or
reduce.

@ Reduce/reduce conflicts: the parser knows to reduce, but cannot tell
which reduction to perform.

If the LR(0) parsing table for a grammar contains no conflicts, the
grammar is in LR(0) grammar.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 25/31

Construction of SLR Parsing Table

@ For each edge I X J where X is a terminal, we put the action shift
J at position (I, X)) of the table.

e If X is a nonterminal, we put an goto J at position (I, X).

@ For each state I containing an item S’ — S., we put an accept
action at (I, $).

e Finally, for a state containing an item A — ~. (production n with
the dot at the end), we put a reduce n action at (I,Y) for every
token Y € FOLLOW (A).

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 26 /31

SLR Parsing Table

@ In state 2, we have an item E — T., so we put action 2 at the (2,Y") entries
where Y € FOLLOW (E) = {$,+,)}

@ In state 3, we have an item T' — F., so we put action 74 at the (3,Y") entries

where Y € FOLLOW (T) = {$,+,), *}

@ In state 5, we have an item F' — id., so we put action 76 at the (5,Y") entries

where Y € FOLLOW (F) = {$,+,), *}

State | id + x () $ E T F
0 sb s4 gl g2 g3
1 s6 acc

2 r2 87 r2 r2

3 rd r4 rd r4

4 s5 s4 g8 g2 g3
5 r6 716 r6 716

6 sb s4 g9 g3
7 s5 s4 gl0
8 s6 sl1

9 rl s7 rl rl

10 r3 r3 r3 r3

11 r5 r5 r5 rb

Hakjoo Oh COSE312 2025 Spring, Lecture 5

March 25, 2025

27 /31

LR(0) vs. SLR(1)

e LR(0) parsing makes shift/reduce decisions based solely on the DFA
states, which often leads to conflicts (shift-reduce, reduce-reduce).

@ SLR addresses this by using a 1-token lookahead. It checks the next
token in the current state and uses that information to reduce
conflicts. SLR is also called SLR(1).

» For example, if A — « is a candidate for reduction in the current
state, the reduction occurs only if the next token is in FOLLOW (A).

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 28 /31

Limitations of SLR

Consider the unambiguous grammar:

S - L=R|R
L — *R|id

R — L
The LR(0) items include
Is: S—L=.R
I,: S—L. =R R — .L
R — L. L—.xR

L — .id

where we put the “shift 6" action in the (2, =) entry of the parsing table. Since = is in
FOLLOW (R) (since S = L = R = xR = R), we also put the “reduce R — L"
action in the entry. E.g.,

Stack Input Action

$ id = id$ shift

$id = id$ reduce L — id

$L = id$ shift / reduce R — L

where the correct action is shift in the context of S — L = R. Reduce R — L
is only possible when the next token is $. SLR does not consider such a context.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 29/31

More Powerful LR Parsers

We can extend LR(0) parsing to use one symbol of lookahead on the
input:
e LR(1) parsing:
» The parsing table is based on LR(1) items.
* E.g., (R— L,$8): “reduce with R — L when the next token is $"
(do not reduce when the next token is =)
» Make full use of the lookahead symbol.
> Generate a large set of states.
e LALR(1) parsing.
» Based on the LR(0) items.
» Introducing lookaheads into the LR(0) items.

» Parsing tables have many fewer states than LR(1), no bigger than that
of SLR.

Hakjoo Oh COSE312 2025 Spring, Lecture 5 March 25, 2025 30/31

Summary

f unambiguous grammars

fr

LUk)) LR(Kk) \
LL(T) LR(1) \

e

~

ambiguous
grammars

_J

Hakjoo Oh

COSE312 2025 Spring, Lecture 5

March 25, 2025

31/31

