
COSE312: Compilers

Lecture 3 — Syntax Analysis (1): Context-Free Grammar

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 1 / 22

Syntax Analysis (Parsing)

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

Determine whether or not the input program is syntactically valid. If so,
transform the stream

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree (or parse tree):

=

(ID,pos)

(ID,init)

+

*

(ID,rate) (NUM,10)

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 2 / 22

Contents

Specification: context-free grammars.

Algorithms: top-down and bottom-up parsing algorithms

Tools: automatic parser generator

Lexical Analyzer
Generator

lexical patterns
in regular expressions

source program stream of tokensLexical Analyzer
(string recognizer)

Parser
Generator

syntax specification
in context-free grammar

stream of tokens syntax tree
Parser

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 3 / 22

Context-Free Grammar
Example: Palindrome

A string is a palindrome if it reads the same forward and backward.

L = {w ∈ {0, 1}∗ | w = wR} ====

L is not regular, but context-free.

Every context-free language is defined by a recursive definition.
▶ Basis: ϵ, 0, and 1 are palindromes.
▶ Induction: If w is a palindrome, so are 0w0 and 1w1.

The recursive definition is expressed by a context-free grammar.

P → ϵ
P → 0
P → 1
P → 0P0
P → 1P1

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 4 / 22

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

G = (V, T, S, P)

V : a finite set of variables (nonterminals)

T : a finite set of terminal symbols (tokens)

S ∈ V : the start variable

P : a finite set of productions. A production has the form

x → y

where x ∈ V and y ∈ (V ∪ T)∗.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 5 / 22

Example: Expressions

G = ({E}, {(,), id}, E, P)

where P :
E → E + E | E ∗ E | −E | (E) | id

The language includes id ∗ (id + id) because it is “derived” from E as
follows:

E ⇒ E ∗ E ⇒ id ∗ E ⇒ id ∗ (E) ⇒ id ∗ (E + E)
⇒ id ∗ (id + E) ⇒ id ∗ (id + id)

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 6 / 22

Derivation

Definition (Derivation Relation, ⇒)

Let G = (V, T, S, P) be a context-free grammar. Let αAβ be a string
of terminals and variables, where A ∈ V and α, β ∈ (V ∪ T)∗. Let
A → γ is a production in G. Then, we say αAβ derives αγβ, and write

αAβ ⇒ αγβ.

Definition (⇒∗, Closure of ⇒)

⇒∗ is a relation that represents zero, or more steps of derivations:

Basis: For any string α of terminals and variables, α ⇒∗ α.

Induction: If α ⇒∗ β and β ⇒ γ, then α ⇒∗ γ.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 7 / 22

Language of Grammar

Definition (Sentential Forms)

If G = (V, T, S, P) is a context-free grammar, then any string
α ∈ (V ∪ T)∗ such that S ⇒∗ α is a sentential form.

Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

L(G) = {w ∈ T ∗ | S ⇒∗ w}.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 8 / 22

Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a
sentence −(id + id) can be derived by

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

or alternatively by

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(E + id) ⇒ −(id + id)

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 9 / 22

Leftmost and Rightmost Derivations

Leftmost derivation: the leftmost non-terminal in each sentential is
always chosen. If α ⇒ β is a step in which the leftmost non-terminal
in α is replaced, we write α ⇒l β.

E ⇒l −E ⇒l −(E) ⇒l −(E + E) ⇒l −(id + E) ⇒l −(id + id)

Rightmost derivation (canonical derivation): the rightmost
non-terminal in each sentential is always chosen. If α ⇒ β is a step in
which the rightmost non-terminal in α is replaced, we write α ⇒r β.

E ⇒r −E ⇒r −(E) ⇒r −(E + E) ⇒r −(E + id) ⇒r −(id + id)

If S ⇒∗
l α, α is a left sentential form.

If S ⇒∗
r α, α is a right sentential form.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 10 / 22

Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

is represented by the parse tree:

E

— E

E()

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

Each interior node represents the application of a production.

The interior node is labeled by the head of the production.

Children are labeled by the symbols in the body of the production.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 11 / 22

Parse Tree

A parse tree ignores variations in the order in which symbols are replaced.
Two derivations

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(E + id) ⇒ −(id + id)

produce the same parse tree:

E

— E

E()

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

The parse trees for two derivations are identical if the derivations use the
same set of rules (they apply those rules only in a different order).

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 12 / 22

Ambiguity

A grammar is ambiguous if

it produces more than one parse tree for some sentence,

it has multiple leftmost derivations, or

it has multiple rightmost derivations.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 13 / 22

Example

The grammar

E → E + E | E ∗ E | −E | (E) | id

is ambiguous, because it permits two different leftmost derivations for
id + id ∗ id:

1 E ⇒ E+E ⇒ id+E ⇒ id+E∗E ⇒ id+id∗E ⇒ id+id∗id
E

— E

E()

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

2 E ⇒ E∗E ⇒ E+E∗E ⇒ id+E∗E ⇒ id+id∗E ⇒ id+id∗id
E

— E

E()

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 14 / 22

Writing a Grammar

Transformations to make a grammar more suitable for parsing:

eliminating ambiguity

eliminating left-recursion

left factoring

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 15 / 22

Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an
ambiguous grammar:

E → E + E | E ∗ E | (E) | id

To eliminate the ambiguity, we express in grammar
(precedence) bind ∗ tighter than +

▶ 1 + 2 ∗ 3 is always parsed by 1 + (2 ∗ 3)

(associativity) ∗ and + associate to the left
▶ 1 + 2 + 3 is always parsed by (1 + 2) + 3

An unambiguous grammar:

E → E + T | T
T → T ∗ F | F
F → id | (E)

parse tree for id + id + id

parse tree for id + id ∗ id

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 16 / 22

Exercise

Transform the grammar

E → E + T | T
T → T ∗ F | F
F → id | (E)

so that ∗ associate to the right.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 17 / 22

Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A
appears as the first right-hand-side symbol in an A-production, e.g.,

E → E + T | T

To eliminate left-recursion, rewrite the grammar using right recursion:

E → T E′

E′ → + T E′

E′ → ϵ

In general, if A → Aα | β are two A-productions, we can eliminate
left-recursion as follows:

A → βA′

A′ → αA′ | ϵ

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 18 / 22

Left Factoring

The grammar
S → if E then S else S
S → if E then S

has rules with the same prefix. We can left factor the grammar as follows:

S → if E then S X
X → ϵ
X → else S

In general, if A → αβ1 | αβ2 are two A-productions, we can refactor
the grammar as follows:

A → αA′

A′ → β1 | β2

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 19 / 22

Exercise

Consider the grammar for regular expressions over a and b:

rexpr → rexpr + rterm | rterm
rterm → rterm rfactor | rfactor

rfactor → rfactor ∗ | rprimary
rprimary → a | b

Find an equivalent, left-factored grammar without left-recursion.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 20 / 22

Non-Context-Free Language Constructs

Example 1: The problem of checking that identifiers are declared
before they are used in a program:

L1 = {wcw | w ∈ (a|b)∗}

▶ E.g., aabcaab
▶ The first w: the declaration of an identifier w
▶ c: an intervening program fragment
▶ The second w: the use of the identifier

Example 2: The problem of checking that the number of formal
parameters of a function agrees with the number of actual parameters
in a call:

L2 = {anbmcndm | n ≥ 1,m ≥ 1}

▶ an and bm represent the formal-parameter lists of two functions
declared to have n and m arguments, respectively, while cn and dm

are the actual-parameter lists in calls to these two functions.

Checking these properties is usually done during the semantic-analysis
phase.Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 21 / 22

Summary

The syntax of a programming language is usually specified by a
context-free grammar.

▶ derivation, left/rightmost derivations
▶ parse trees
▶ ambiguous/unambiguous grammars
▶ grammar transformation (eliminating ambiguity, eliminating

left-recursion, left factoring)

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 22 / 22

