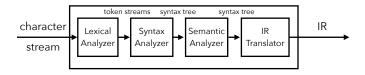
### COSE312: Compilers

Lecture 3 — Syntax Analysis (1): Context-Free Grammar

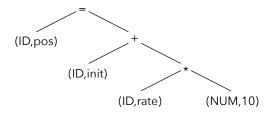
Hakjoo Oh 2025 Spring

# Syntax Analysis (Parsing)



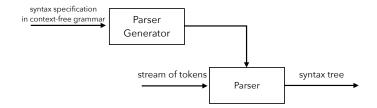
Determine whether or not the input program is syntactically valid. If so, transform the stream

into the syntax tree (or parse tree):



### Contents

- Specification: context-free grammars.
- Algorithms: top-down and bottom-up parsing algorithms
- Tools: automatic parser generator



# Context-Free Grammar

Example: Palindrome

- A string is a palindrome if it reads the same forward and backward.
- $\bullet \ L = \{w \in \{0,1\}^* \mid w = w^R\} = = =$
- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
  - Basis:  $\epsilon$ , 0, and 1 are palindromes.
  - Induction: If w is a palindrome, so are 0w0 and 1w1.
- The recursive definition is expressed by a context-free grammar.

$$\begin{array}{rccc} P & \rightarrow & \epsilon \\ P & \rightarrow & 0 \\ P & \rightarrow & 1 \\ P & \rightarrow & 0 P 0 \\ P & \rightarrow & 1 P 1 \end{array}$$

# Context-Free Grammar

#### Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

G = (V, T, S, P)

- V: a finite set of variables (nonterminals)
- T: a finite set of terminal symbols (tokens)
- $S \in V$ : the start variable
- P: a finite set of productions. A production has the form

where  $x \in V$  and  $y \in (V \cup T)^*$ .

5/22

### Example: Expressions

$$G = (\{E\}, \{(,), \mathrm{id}\}, E, P)$$

where P:

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

The language includes id \* (id + id) because it is "derived" from E as follows:

$$E \Rightarrow E * E \Rightarrow \mathrm{id} * E \Rightarrow \mathrm{id} * (E) \Rightarrow \mathrm{id} * (E + E)$$
  
$$\Rightarrow \mathrm{id} * (\mathrm{id} + E) \Rightarrow \mathrm{id} * (\mathrm{id} + \mathrm{id})$$

## Derivation

#### Definition (Derivation Relation, $\Rightarrow$ )

Let G = (V, T, S, P) be a context-free grammar. Let  $\alpha A\beta$  be a string of terminals and variables, where  $A \in V$  and  $\alpha, \beta \in (V \cup T)^*$ . Let  $A \to \gamma$  is a production in G. Then, we say  $\alpha A\beta$  derives  $\alpha \gamma \beta$ , and write

 $\alpha A\beta \Rightarrow \alpha \gamma \beta.$ 

#### Definition ( $\Rightarrow^*$ , Closure of $\Rightarrow$ )

 $\Rightarrow^*$  is a relation that represents zero, or more steps of derivations:

- Basis: For any string  $\alpha$  of terminals and variables,  $\alpha \Rightarrow^* \alpha$ .
- Induction: If  $\alpha \Rightarrow^* \beta$  and  $\beta \Rightarrow \gamma$ , then  $\alpha \Rightarrow^* \gamma$ .

# Language of Grammar

#### Definition (Sentential Forms)

If G = (V, T, S, P) is a context-free grammar, then any string  $\alpha \in (V \cup T)^*$  such that  $S \Rightarrow^* \alpha$  is a sentential form.

#### Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

#### Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

### Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a sentence -(id + id) can be derived by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

or alternatively by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+\mathrm{id}) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

### Leftmost and Rightmost Derivations

 Leftmost derivation: the leftmost non-terminal in each sentential is always chosen. If α ⇒ β is a step in which the leftmost non-terminal in α is replaced, we write α ⇒<sub>l</sub> β.

$$E \Rightarrow_l - E \Rightarrow_l - (E) \Rightarrow_l - (E + E) \Rightarrow_l - (\mathrm{id} + E) \Rightarrow_l - (\mathrm{id} + \mathrm{id})$$

 Rightmost derivation (canonical derivation): the rightmost non-terminal in each sentential is always chosen. If α ⇒ β is a step in which the rightmost non-terminal in α is replaced, we write α ⇒<sub>r</sub> β.

$$E \Rightarrow_r - E \Rightarrow_r -(E) \Rightarrow_r -(E+E) \Rightarrow_r -(E+\mathrm{id}) \Rightarrow_r -(\mathrm{id}+\mathrm{id})$$

- If  $S \Rightarrow_l^* \alpha$ ,  $\alpha$  is a left sentential form.
- If  $S \Rightarrow_r^* \alpha$ ,  $\alpha$  is a right sentential form.

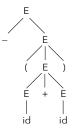
10 / 22

### Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

is represented by the parse tree:



- Each interior node represents the application of a production.
- The interior node is labeled by the head of the production.
- Children are labeled by the symbols in the body of the production.

Hakjoo Oh

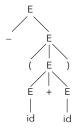
COSE312 2025 Spring, Lecture 3

### Parse Tree

A parse tree ignores variations in the order in which symbols are replaced. Two derivations

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$
  
 $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+\mathrm{id}) \Rightarrow -(\mathrm{id}+\mathrm{id})$ 

produce the same parse tree:



The parse trees for two derivations are identical if the derivations use the same set of rules (they apply those rules only in a different order).

# Ambiguity

A grammar is ambiguous if

- it produces more than one parse tree for some sentence,
- it has multiple leftmost derivations, or
- it has multiple rightmost derivations.

### Example

The grammar

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

is ambiguous, because it permits two different leftmost derivations for id + id \* id:



 $@ E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow \mathrm{id} + E * E \Rightarrow \mathrm{id} + \mathrm{id} * E \Rightarrow \mathrm{id} + \mathrm{id} * \mathrm{id}$ 



14 / 22

# Writing a Grammar

Transformations to make a grammar more suitable for parsing:

- eliminating ambiguity
- eliminating left-recursion
- left factoring

## Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an ambiguous grammar:

 $E \rightarrow E + E \mid E * E \mid (E) \mid \mathrm{id}$ 

To eliminate the ambiguity, we express in grammar

(precedence) bind \* tighter than +
1+2\*3 is always parsed by 1 + (2\*3)
(associativity) \* and + associate to the left
1+2+3 is always parsed by (1+2)+3

An unambiguous grammar:

$$\begin{array}{l} E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \mathrm{id} \mid (E) \end{array}$$

- parse tree for id + id + id
- parse tree for id + id \* id

### Exercise

Transform the grammar

$$egin{array}{cccc} E 
ightarrow E + T \mid T \ T 
ightarrow T * F \mid F \ F 
ightarrow {
m id} \mid (E) \end{array}$$

so that \* associate to the right.

## Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in an A-production, e.g.,

$$E \to E + T \mid T$$

To eliminate left-recursion, rewrite the grammar using right recursion:

$$egin{array}{cccc} E 
ightarrow T & E' \ E' 
ightarrow + T & E' \ E' 
ightarrow \epsilon \end{array}$$

In general, if  $A \to A\alpha \mid \beta$  are two *A*-productions, we can eliminate left-recursion as follows:

$$egin{array}{ccc} A & o & eta A' \ A' & o & lpha A' \mid \epsilon \end{array}$$

## Left Factoring

The grammar

 $S \to \text{if } E \text{ then } S \text{ else } S$  $S \to \text{if } E \text{ then } S$ 

has rules with the same prefix. We can *left factor* the grammar as follows:

 $\begin{array}{l} S \rightarrow \text{if } E \text{ then } S \ X \\ X \rightarrow \epsilon \\ X \rightarrow \text{else } S \end{array}$ 

In general, if  $A \to \alpha \beta_1 \mid \alpha \beta_2$  are two *A*-productions, we can refactor the grammar as follows:

$$egin{array}{cccc} A & o & lpha A' \ A' & o & eta_1 \mid eta_2 \end{array}$$

19/22

### Exercise

Consider the grammar for regular expressions over a and b:

 $\begin{array}{cccc} rexpr & 
ightarrow \ rexpr + rterm \mid rterm \ rterm \ 
ightarrow \ rterm \ rfactor \mid rfactor \ rfactor \ 
ightarrow \ rfactor \ 
ightarrow \ rfactor \ 
ightarrow \ rfactor \ 
ightarrow \ a \mid b \end{array}$ 

Find an equivalent, left-factored grammar without left-recursion.

# Non-Context-Free Language Constructs

• Example 1: The problem of checking that identifiers are declared before they are used in a program:

 $L_1=\{wcw\mid w\in (a|b)^*\}$ 

▶ E.g., *aabcaab* 

- The first w: the declaration of an identifier w
- c: an intervening program fragment
- The second w: the use of the identifier
- Example 2: The problem of checking that the number of formal parameters of a function agrees with the number of actual parameters in a call:

$$L_2 = \{a^n b^m c^n d^m \mid n \ge 1, m \ge 1\}$$

- ▶ a<sup>n</sup> and b<sup>m</sup> represent the formal-parameter lists of two functions declared to have n and m arguments, respectively, while c<sup>n</sup> and d<sup>m</sup> are the actual-parameter lists in calls to these two functions.
- Checking these properties is usually done during the semantic-analysis

Hakjoo Oh

COSE312 2025 Spring, Lecture 3

March 18, 2025

# Summary

- The syntax of a programming language is usually specified by a context-free grammar.
  - derivation, left/rightmost derivations
  - parse trees
  - ambiguous/unambiguous grammars
  - grammar transformation (eliminating ambiguity, eliminating left-recursion, left factoring)