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Context-Free Grammar
Example: Palindrome

A string is a palindrome if it reads the same forward and backward.

L = {w ∈ {0, 1}∗ | w = wR} ====

L is not regular, but context-free.

Every context-free language is defined by a recursive definition.
▶ Basis: ϵ, 0, and 1 are palindromes.
▶ Induction: If w is a palindrome, so are 0w0 and 1w1.

The recursive definition is expressed by a context-free grammar.

P → ϵ
P → 0
P → 1
P → 0P0
P → 1P1
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Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

G = (V, T, S, P )

V : a finite set of variables (nonterminals)

T : a finite set of terminal symbols (tokens)

S ∈ V : the start variable

P : a finite set of productions. A production has the form

x → y

where x ∈ V and y ∈ (V ∪ T )∗.
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Example: Expressions

G = ({E}, {(, ), id}, E, P )

where P :
E → E + E | E ∗ E | −E | (E) | id

The language includes id ∗ (id + id) because it is “derived” from E as
follows:

E ⇒ E ∗ E ⇒ id ∗ E ⇒ id ∗ (E) ⇒ id ∗ (E + E)
⇒ id ∗ (id + E) ⇒ id ∗ (id + id)
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Derivation

Definition (Derivation Relation, ⇒)

Let G = (V, T, S, P ) be a context-free grammar. Let αAβ be a string
of terminals and variables, where A ∈ V and α, β ∈ (V ∪ T )∗. Let
A → γ is a production in G. Then, we say αAβ derives αγβ, and write

αAβ ⇒ αγβ.

Definition (⇒∗, Closure of ⇒)

⇒∗ is a relation that represents zero, or more steps of derivations:

Basis: For any string α of terminals and variables, α ⇒∗ α.

Induction: If α ⇒∗ β and β ⇒ γ, then α ⇒∗ γ.
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Language of Grammar

Definition (Sentential Forms)

If G = (V, T, S, P ) is a context-free grammar, then any string
α ∈ (V ∪ T )∗ such that S ⇒∗ α is a sentential form.

Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

L(G) = {w ∈ T ∗ | S ⇒∗ w}.
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Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a
sentence −(id + id) can be derived by

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

or alternatively by

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(E + id) ⇒ −(id + id)
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Leftmost and Rightmost Derivations

Leftmost derivation: the leftmost non-terminal in each sentential is
always chosen. If α ⇒ β is a step in which the leftmost non-terminal
in α is replaced, we write α ⇒l β.

E ⇒l −E ⇒l −(E) ⇒l −(E + E) ⇒l −(id + E) ⇒l −(id + id)

Rightmost derivation (canonical derivation): the rightmost
non-terminal in each sentential is always chosen. If α ⇒ β is a step in
which the rightmost non-terminal in α is replaced, we write α ⇒r β.

E ⇒r −E ⇒r −(E) ⇒r −(E + E) ⇒r −(E + id) ⇒r −(id + id)

If S ⇒∗
l α, α is a left sentential form.

If S ⇒∗
r α, α is a right sentential form.

Hakjoo Oh COSE312 2025 Spring, Lecture 3 March 18, 2025 10 / 22



Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

is represented by the parse tree:

E

— E

E( )

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

Each interior node represents the application of a production.

The interior node is labeled by the head of the production.

Children are labeled by the symbols in the body of the production.
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Parse Tree

A parse tree ignores variations in the order in which symbols are replaced.
Two derivations

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(id + E) ⇒ −(id + id)

E ⇒ −E ⇒ −(E) ⇒ −(E + E) ⇒ −(E + id) ⇒ −(id + id)

produce the same parse tree:

E

— E

E( )

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

The parse trees for two derivations are identical if the derivations use the
same set of rules (they apply those rules only in a different order).
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Ambiguity

A grammar is ambiguous if

it produces more than one parse tree for some sentence,

it has multiple leftmost derivations, or

it has multiple rightmost derivations.
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Example

The grammar

E → E + E | E ∗ E | −E | (E) | id

is ambiguous, because it permits two different leftmost derivations for
id + id ∗ id:

1 E ⇒ E+E ⇒ id+E ⇒ id+E∗E ⇒ id+id∗E ⇒ id+id∗id
E

— E

E( )

+E E

id id

E

+E

id

E

*E E

id id

E

* EE

+E E

id id

2 E ⇒ E∗E ⇒ E+E∗E ⇒ id+E∗E ⇒ id+id∗E ⇒ id+id∗id
E

— E
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Writing a Grammar

Transformations to make a grammar more suitable for parsing:

eliminating ambiguity

eliminating left-recursion

left factoring
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Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an
ambiguous grammar:

E → E + E | E ∗ E | (E) | id

To eliminate the ambiguity, we express in grammar
(precedence) bind ∗ tighter than +

▶ 1 + 2 ∗ 3 is always parsed by 1 + (2 ∗ 3)

(associativity) ∗ and + associate to the left
▶ 1 + 2 + 3 is always parsed by (1 + 2) + 3

An unambiguous grammar:

E → E + T | T
T → T ∗ F | F
F → id | (E)

parse tree for id + id + id

parse tree for id + id ∗ id
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Exercise

Transform the grammar

E → E + T | T
T → T ∗ F | F
F → id | (E)

so that ∗ associate to the right.
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Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A
appears as the first right-hand-side symbol in an A-production, e.g.,

E → E + T | T

To eliminate left-recursion, rewrite the grammar using right recursion:

E → T E′

E′ → + T E′

E′ → ϵ

In general, if A → Aα | β are two A-productions, we can eliminate
left-recursion as follows:

A → βA′

A′ → αA′ | ϵ
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Left Factoring

The grammar
S → if E then S else S
S → if E then S

has rules with the same prefix. We can left factor the grammar as follows:

S → if E then S X
X → ϵ
X → else S

In general, if A → αβ1 | αβ2 are two A-productions, we can refactor
the grammar as follows:

A → αA′

A′ → β1 | β2
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Exercise

Consider the grammar for regular expressions over a and b:

rexpr → rexpr + rterm | rterm
rterm → rterm rfactor | rfactor

rfactor → rfactor ∗ | rprimary
rprimary → a | b

Find an equivalent, left-factored grammar without left-recursion.
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Non-Context-Free Language Constructs

Example 1: The problem of checking that identifiers are declared
before they are used in a program:

L1 = {wcw | w ∈ (a|b)∗}

▶ E.g., aabcaab
▶ The first w: the declaration of an identifier w
▶ c: an intervening program fragment
▶ The second w: the use of the identifier

Example 2: The problem of checking that the number of formal
parameters of a function agrees with the number of actual parameters
in a call:

L2 = {anbmcndm | n ≥ 1,m ≥ 1}

▶ an and bm represent the formal-parameter lists of two functions
declared to have n and m arguments, respectively, while cn and dm

are the actual-parameter lists in calls to these two functions.

Checking these properties is usually done during the semantic-analysis
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Summary

The syntax of a programming language is usually specified by a
context-free grammar.

▶ derivation, left/rightmost derivations
▶ parse trees
▶ ambiguous/unambiguous grammars
▶ grammar transformation (eliminating ambiguity, eliminating

left-recursion, left factoring)
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