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ex) Given a C program

float match0 (char *s) /* find a zero */

{if (!strncmp(s, "0.0", 3))

return 0.0;

}

the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN
RETURN REAL(0.0) SEMI RBRACE EOF
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Specification, Recognition, and Automation

1 Specification: how to specify lexical patterns?
▶ In C, identifiers are strings like x, xy, match0, and _abc.
▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.

⇒ regular expressions
2 Recognition: how to recognize the lexical patterns?

▶ Recognize match0 as an identifier.
▶ Recognize 512 as a number.

⇒ deterministic finite automata.

3 Automation: how to automatically generate string recognizers from
specifications?
⇒ Thompson’s construction and subset construction
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lex: a lexical analyzer generator for C

jlex: a lexical analyzer generator for Java

ocamllex: a lexical analyzer generator for OCaml
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Part 1: Specification

Preliminaries: alphabets, strings, languages

Syntax and semantics of regular expressions

Extensions of regular expressions
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Alphabet

An alphabet Σ is a finite, non-empty set of symbols. E.g,

Σ = {0, 1}
Σ = {a, b, . . . , z}
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Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1,
01, 10110 are strings over Σ = {0, 1}. Notations:

ϵ: the empty string.

wv: the concatenation of w and v.

wR: the reverse of w.

|w|: the length of string w:

|ϵ| = 0
|va| = |v| + 1

If w = vu, then v is a prefix of w, and u is a suffix of w.

Σk: the set of strings over Σ of length k

Σ∗: the set of all strings over alphabet Σ:

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · =
⋃
i∈N

Σi

Σ+ = Σ1 ∪ Σ2 ∪ · · · = Σ∗ \ {ϵ}
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Languages

A language L is a subset of Σ∗: L ⊆ Σ∗.

L1 ∪ L2, L1 ∩ L2, L1 − L2

LR = {wR | w ∈ L}
L = Σ∗ − L

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}
The power of a language, Ln:

L0 = {ϵ}
Ln = Ln−1L

The star-closure (or Kleene closure) of a language, L∗:

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =
⋃
i≥0

Li

The positive closure of a language, L+:

L+ = L1 ∪ L2 ∪ L3 ∪ · · · =
⋃
i≥1

Li
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Regular Expressions

A regular expression is a notation to denote a language.

Syntax
R → ∅

| ϵ
| a ∈ Σ
| R1 | R2

| R1 · R2

| R∗
1

| (R)

Semantics
L(∅) = ∅
L(ϵ) = {ϵ}
L(a) = {a}

L(R1 | R2) = L(R1) ∪ L(R2)
L(R1 · R2) = L(R1)L(R2)

L(R∗) = (L(R))∗

L((R)) = L(R)
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Example

L(a∗ · (a | b)) = L(a∗)L(a | b)
= (L(a))∗(L(a) ∪ L(b))

= ({a})∗({a} ∪ {b})
= {ϵ, a, aa, aaa, . . .}({a, b})
= {a, aa, aaa, . . . , b, ab, aab, . . .}
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Exercises

Write regular expressions for the following languages:

The set of all strings over Σ = {a, b}.
The set of strings of a’s and b’s, terminated by ab.

The set of strings with an even number of a’s followed by an odd
number of b’s.

The set of C identifiers.
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Regular Definitions

Give names to regular expressions and use the names in subsequent
expressions, e.g., the set of C identifiers:

letter → A | B | · · · | Z | a | b | · · · | z | _
digit → 0 | 1 | · · · | 9

id → letter(letter | digit)∗

Formally, a regular definition is a sequence of definitions of the form:

d1 → r1
d2 → r2

· · ·
dn → rn

1 Each di is a new name such that di ̸∈ Σ.

2 Each ri is a regular expression over Σ ∪ {d1, d2, . . . , di−1}.
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Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234,
6.336E4, or 1.89E-4:

digit → 0 | 1 | · · · | 9
digits → digit digit∗

optionalFraction → . digits | ϵ
optionalExponent → (E (+ | - | ϵ) digits) | ϵ

number → digits optionalFraction optionalExponent
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Extensions of Regular Expressions

1 R+: the positive closure of R, i.e., L(R+) = L(R)+.

2 R?: zero or one instance of R, i.e., L(R?) = L(R) ∪ {ϵ}.
3 [a1a2 · · · an]: the shorthand for a1 | a2 | · · · | an.
4 [a1-an]: the shorthand for [a1a2 · · · an], where a1, . . . , an are

consecutive symbols.
▶ [abc] = a | b | c
▶ [a-z] = a | b | · · · | z.
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Examples

C identifiers:

letter → [A-Za-z_]
digit → [0-9]

id → letter (letter |digit)∗

Unsigned numbers:

digit → [0-9]

digits → digit+

number → digits (. digits)? (E [+-]? digits)?
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Summary

1 Specification: how to specify lexical patterns?
▶ In C, identifiers are strings like x, xy, match0, and _abc.
▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.

⇒ regular expressions
2 Recognition: how to recognize the lexical patterns?

▶ Recognize match0 as an identifier.
▶ Recognize 512 as a number.

⇒ deterministic finite automata.

3 Automation: how to automatically generate string recognizers from
specifications?
⇒ Thompson’s construction and subset construction
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Part 2: String Recognition by Finite Automata

Non-deterministic finite automata

Deterministic finite automata
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String Recognizer in NFA

An NFA that recognizes strings (a|b)∗abb:

0start 1 2 3
a b b

a,b
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Non-deterministic Finite Automata

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

M = (Q,Σ, δ, q0, F )

where

Q: a finite set of states

Σ: a finite set of input symbols (or input alphabet). We assume that
ϵ ̸∈ Σ.

q0 ∈ Q: the initial state

F ⊆ Q: a set of final states (or accepting states)

δ : Q × (Σ ∪ {ϵ}) → 2Q: transition function
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Example

Definition of an NFA:

({0, 1, 2, 3}, {a, b}, δ, 0, {3})

δ(0, a) = {0, 1} δ(0, b) = {0}
δ(1, a) = ∅ δ(1, b) = {2}
δ(2, a) = ∅ δ(2, b) = {3}
δ(3, a) = ∅ δ(3, b) = ∅

The transition graph:

0start 1 2 3
a b b

a,b
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Example

The transition table:

State a b ϵ

0 {0, 1} {0} ∅
1 ∅ {2} ∅
2 ∅ {3} ∅
3 ∅ ∅ ∅
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String Recognition

An NFA recognizes a string w if there is a path in the transition
graph labeled by w.

0start 1 2 3
a b b

a,b

String aabb is accepted because

0
a→ 0

a→ 1
b→ 2

b→ 3

In general, the automaton recognizes any strings that end with abb:

L = {wabb | w ∈ {a, b}∗}

The language of an NFA is the set of recognizable strings.
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Exercises

Find the languages of the NFAs:

q0start

a, b

q0start

q1

q2

a

b

a, b
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Exercises

0start

1 2

3 4

ϵ

a

ϵ

b

a

b

q0start q1 q2 q6 q3 q4 q5
a a ϵ b b b

ϵ ϵ

ϵ ϵ
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Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

1 there are no moves on ϵ, and

2 for each state and input symbol, the next state is unique.

Definition (DFA)

A deterministic finite automaton (or DFA) is defined by a tuple of five
components:

M = (Q,Σ, δ, q0, F )

where

Q: a finite set of states

Σ: a finite set of input symbols (or input alphabet)

δ : Q × Σ → Q: a total function called transition function

q0 ∈ Q: the initial state

F ⊆ Q: a set of final states
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Example

A DFA that accepts (a | b)∗abb:

0start 1 2 3
a b b

a

a

bb

a
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Exercise 1

What is the language of the DFA?

q0start q1 q2

q3

a b

b
a

a, b

a, b
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Exercise 2

What is the language of the DFA?

q0start q1 q2
0 1

1 0

0

1
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Summary

NFAs and DFAs are string recognizers.

DFAs provide a concrete algorithm for recognizing strings.

NFAs bridge the gap between REs and DFAs:
▶ REs are descriptive but not executable.
▶ DFAs are executable but not descriptive.
▶ NFAs are in-between the REs and DFAs.
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Part 3: Automation

Transform the lexical specification into an executable string recognizers:

RE NFA DFA
Thompson’s  
construction

subset  
construction
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From REs to NFAs

Transform a given regular expression into a semantically equivalent NFAs:

RE2NFA 
compilerregular expression NFA

the language of the RE the language of the NFA

An instance of compilation, where

source language is regular expressions and target language is NFAs

the correctness is defined by the equivalence of the denoted languages
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Principles of Compilation

Every automatic compilation

1 is done “compositionally”, and

2 maintains some “invariants” during compilation.

Compilation of regular expressions, e.g., R1|R2:

1 The compilation of R1|R2 is defined in terms of the compilation of
R1 and R2.

2 Compiled NFAs for R1 and R2 satisfy the invariants:
▶ an NFA has exactly one accepting state,
▶ no arcs into the initial state, and
▶ no arcs out of the accepting state.
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The Source Language

R → ∅
| ϵ
| a ∈ Σ
| R1 | R2

| R1 · R2

| R∗
1

| (R)
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Compilation

Base cases:

R = ϵ:

✏

a

R = ∅

✏

aR = a (∈ Σ)

✏

a
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Compilation

Inductive cases:

R = R1|R2:
1 Compile R1 and R2:

R1

R2

✏

✏

✏

✏

R1

R2

2 Compile R1|R2 using the results:

R1

R2

✏

✏

✏

✏

R1

R2
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Compilation

R = R1 · R2:
1 Compile R1 and R2:

R1 R2

R1 R2
✏2 Compile R1 · R2 using the results:

R1 R2

R1 R2
✏
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Compilation

R = R∗
1:

1 Compile R1:

R1

R1

✏

✏ ✏

✏

2 Compile R∗
1 using the results:

R1

R1

✏

✏ ✏

✏
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Examples

0 · 1∗:

(0|1) · 0 · 1:

(0|1)∗ · 1 · (0|1):
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From NFA to DFA

Transform an NFA
(N,Σ, δN , n0, NA)

into an equivalent DFA

(D,Σ, δD, d0, DA).

Running example:

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ
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ϵ-Closures

ϵ-closure(I): the set of states reachable from I without consuming any
symbols.

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

ϵ-closure({1}) = {1, 2, 3, 4, 6, 9}
ϵ-closure({1, 5}) = {1, 2, 3, 4, 6, 9} ∪ {3, 4, 5, 6, 8, 9}
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Subset Construction

Input: an NFA (N,Σ, δN , n0, NA).

Output: a DFA (D,Σ, δD, d0, DA).

Key Idea: the DFA simulates the NFA by considering every possibility
at once. A DFA state d ∈ D is a set of NFA state, i.e., d ⊆ N .
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Running Example (1/5)

The initial DFA state d0 = ϵ-closure({0}) = {0}.

{0}start
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Running Example (2/5)

For the initial state S, consider every x ∈ Σ and compute the
corresponding next states:

ϵ-closure(
⋃
s∈S

δ(s, a)).

ϵ-closure(
⋃

s∈{0} δ(s, a)) = {1, 2, 3, 4, 6, 9}
ϵ-closure(

⋃
s∈{0} δ(s, b)) = ∅

ϵ-closure(
⋃

s∈{0} δ(s, c)) = ∅

{0}start
{1, 2, 3,
4, 6, 9}

a
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Running Example (3/5)

For the state {1, 2, 3, 4, 6, 9}, compute the next states:

ϵ-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, a)) = ∅
ϵ-closure(

⋃
s∈{1,2,3,4,6,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}

ϵ-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c
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Running Example (4/5)

Compute the next states of {3, 4, 5, 6, 8, 9}:
ϵ-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, a)) = ∅

ϵ-closure(
⋃

s∈{3,4,5,6,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ϵ-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b
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Running Example (5/5)

Compute the next states of {3, 4, 6, 7, 8, 9}:
ϵ-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, a)) = ∅

ϵ-closure(
⋃

s∈{3,4,6,7,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ϵ-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b

b

c
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Subset Construction Algorithm

15

{0}start {1, 2, 3, 4, 6, 9}

{3, 4, 5, 6, 8, 9}

{3, 4, 6, 7, 8, 9}

a

b

c

c

b

b

c

This precise algorithm is as follows:

Algorithm 1 Subset construction

Input: An NFA (N,ω, εN , n0, NA)
Output: An equivalent DFA (D,ω, εD, d0, DA)
d0 = ϑ-closure({n0})
D = {d0}
W = {d0}
while W →= ↑ do

remove q from W
for c ↓ ω do

t = ϑ-closure(
⋃

s→q ε(s, c))
D = D ↔ {t}
εD(q, c) = t
if t was newly added to D then

W = W ↔ {t}
end if

end for
end while
DA = {q ↓ D | q ↗ NA →= ↑}

The algorithm first constructs the initial state d0 by closuring n0; d0 contains n0 and any other
states reachable from n0 along ω-transitions. The algorithm initializes the set of DFA states D by
the singleton set d0. It also maintains a set of states, called worklist, and initialize the set W by
d0.

The algorithm proceeds by removing a state q from W . Then, it considers every character c in
the alphabet, and compute the set of NFA states that are reachable from states in q by consuming
c and following any ω-transitions. Let t be the result. We update the transition table. When t is
a new state that has not been considered so far, we add t to W . Otherwise no update is done
on these sets. The while-loop is repeated until the worklist is empty. The outer loop eventually
terminates, because S always grows and the number of NFA states is finite.

Example 11. Consider the NFA again:
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Running Example (1/5)

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

The initial state d0 = ϵ-closure({0}) = {0}. Initialize D and W :

D = {{0}}, W = {{0}}
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Running Example (2/5)

Choose q = {0} from W . For all c ∈ Σ, update δD:

a b c

{0} {1, 2, 3, 4, 6, 9} ∅ ∅

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}}, W = {{1, 2, 3, 4, 6, 9}}
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Running Example (3/5)

Choose q = {1, 2, 3, 4, 6, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
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Running Example (4/5)

Choose q = {3, 4, 5, 6, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 6, 7, 8, 9}}
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Running Example (5/5)

Choose q = {3, 4, 6, 7, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 6, 7, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = ∅

The while loop terminates. The accepting states:

DA = {{1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
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Algorithm for computing ϵ-Closures

The definition

ϵ-closure(I) is the set of states reachable from I
without consuming any symbols.

is neither formal nor constructive.

A formal definition:
T = ϵ-closure(I) is the smallest set such that

I ∪
⋃
s∈T

δ(s, ϵ) ⊆ T.

Alternatively, T is the smallest solution of the equation

F (X) ⊆ (X)

where
F (X) = I ∪

⋃
s∈X

δ(s, ϵ).

Such a solution is called the least fixed point of F .
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Fixed Point Iteration

The least fixed point of a function can be computed by the fixed point
iteration:

T = ∅
repeat
T ′ = T
T = T ′ ∪ F (T ′)

until T = T ′
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Example

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

ϵ-closure({1}):
Iteration T ′ T

1 ∅ {1}
2 {1} {1, 2}
3 {1, 2} {1, 2, 3, 9}
4 {1, 2, 3, 9} {1, 2, 3, 4, 6, 9}
5 {1, 2, 3, 4, 6, 9} {1, 2, 3, 4, 6, 9}
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Summary

Key concepts in lexical analysis:

Specification: Regular expressions

Implementation: Deterministic Finite Automata
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