
COSE312: Compilers

Lecture 2 — Lexical Analysis

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 1 / 56

Lexical Analysis

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

ex) Given a C program

float match0 (char *s) /* find a zero */

{if (!strncmp(s, "0.0", 3))

return 0.0;

}

the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN
RETURN REAL(0.0) SEMI RBRACE EOF

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 2 / 56

Specification, Recognition, and Automation

1 Specification: how to specify lexical patterns?
▶ In C, identifiers are strings like x, xy, match0, and _abc.
▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.

⇒ regular expressions
2 Recognition: how to recognize the lexical patterns?

▶ Recognize match0 as an identifier.
▶ Recognize 512 as a number.

⇒ deterministic finite automata.

3 Automation: how to automatically generate string recognizers from
specifications?
⇒ Thompson’s construction and subset construction

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 3 / 56

cf) Lexical Analyzer Generator

Lexical Analyzer
Generator

lexical patterns
in regular expressions

source program stream of tokensLexical Analyzer
(string recognizer)

Parser
Generator

syntax specification
in context-free grammar

stream of tokens syntax tree
Parser

lex: a lexical analyzer generator for C

jlex: a lexical analyzer generator for Java

ocamllex: a lexical analyzer generator for OCaml

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 4 / 56

Part 1: Specification

Preliminaries: alphabets, strings, languages

Syntax and semantics of regular expressions

Extensions of regular expressions

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 5 / 56

Alphabet

An alphabet Σ is a finite, non-empty set of symbols. E.g,

Σ = {0, 1}
Σ = {a, b, . . . , z}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 6 / 56

Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1,
01, 10110 are strings over Σ = {0, 1}. Notations:

ϵ: the empty string.

wv: the concatenation of w and v.

wR: the reverse of w.

|w|: the length of string w:

|ϵ| = 0
|va| = |v| + 1

If w = vu, then v is a prefix of w, and u is a suffix of w.

Σk: the set of strings over Σ of length k

Σ∗: the set of all strings over alphabet Σ:

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · =
⋃
i∈N

Σi

Σ+ = Σ1 ∪ Σ2 ∪ · · · = Σ∗ \ {ϵ}
Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 7 / 56

Languages

A language L is a subset of Σ∗: L ⊆ Σ∗.

L1 ∪ L2, L1 ∩ L2, L1 − L2

LR = {wR | w ∈ L}
L = Σ∗ − L

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}
The power of a language, Ln:

L0 = {ϵ}
Ln = Ln−1L

The star-closure (or Kleene closure) of a language, L∗:

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =
⋃
i≥0

Li

The positive closure of a language, L+:

L+ = L1 ∪ L2 ∪ L3 ∪ · · · =
⋃
i≥1

Li

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 8 / 56

Regular Expressions

A regular expression is a notation to denote a language.

Syntax
R → ∅

| ϵ
| a ∈ Σ
| R1 | R2

| R1 · R2

| R∗
1

| (R)

Semantics
L(∅) = ∅
L(ϵ) = {ϵ}
L(a) = {a}

L(R1 | R2) = L(R1) ∪ L(R2)
L(R1 · R2) = L(R1)L(R2)

L(R∗) = (L(R))∗

L((R)) = L(R)

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 9 / 56

Example

L(a∗ · (a | b)) = L(a∗)L(a | b)
= (L(a))∗(L(a) ∪ L(b))

= ({a})∗({a} ∪ {b})
= {ϵ, a, aa, aaa, . . .}({a, b})
= {a, aa, aaa, . . . , b, ab, aab, . . .}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 10 / 56

Exercises

Write regular expressions for the following languages:

The set of all strings over Σ = {a, b}.
The set of strings of a’s and b’s, terminated by ab.

The set of strings with an even number of a’s followed by an odd
number of b’s.

The set of C identifiers.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 11 / 56

Regular Definitions

Give names to regular expressions and use the names in subsequent
expressions, e.g., the set of C identifiers:

letter → A | B | · · · | Z | a | b | · · · | z | _
digit → 0 | 1 | · · · | 9

id → letter(letter | digit)∗

Formally, a regular definition is a sequence of definitions of the form:

d1 → r1
d2 → r2

· · ·
dn → rn

1 Each di is a new name such that di ̸∈ Σ.

2 Each ri is a regular expression over Σ ∪ {d1, d2, . . . , di−1}.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 12 / 56

Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234,
6.336E4, or 1.89E-4:

digit → 0 | 1 | · · · | 9
digits → digit digit∗

optionalFraction → . digits | ϵ
optionalExponent → (E (+ | - | ϵ) digits) | ϵ

number → digits optionalFraction optionalExponent

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 13 / 56

Extensions of Regular Expressions

1 R+: the positive closure of R, i.e., L(R+) = L(R)+.

2 R?: zero or one instance of R, i.e., L(R?) = L(R) ∪ {ϵ}.
3 [a1a2 · · · an]: the shorthand for a1 | a2 | · · · | an.
4 [a1-an]: the shorthand for [a1a2 · · · an], where a1, . . . , an are

consecutive symbols.
▶ [abc] = a | b | c
▶ [a-z] = a | b | · · · | z.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 14 / 56

Examples

C identifiers:

letter → [A-Za-z_]
digit → [0-9]

id → letter (letter |digit)∗

Unsigned numbers:

digit → [0-9]

digits → digit+

number → digits (. digits)? (E [+-]? digits)?

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 15 / 56

Summary

1 Specification: how to specify lexical patterns?
▶ In C, identifiers are strings like x, xy, match0, and _abc.
▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.

⇒ regular expressions
2 Recognition: how to recognize the lexical patterns?

▶ Recognize match0 as an identifier.
▶ Recognize 512 as a number.

⇒ deterministic finite automata.

3 Automation: how to automatically generate string recognizers from
specifications?
⇒ Thompson’s construction and subset construction

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 16 / 56

Part 2: String Recognition by Finite Automata

Non-deterministic finite automata

Deterministic finite automata

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 17 / 56

String Recognizer in NFA

An NFA that recognizes strings (a|b)∗abb:

0start 1 2 3
a b b

a,b

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 18 / 56

Non-deterministic Finite Automata

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

M = (Q,Σ, δ, q0, F)

where

Q: a finite set of states

Σ: a finite set of input symbols (or input alphabet). We assume that
ϵ ̸∈ Σ.

q0 ∈ Q: the initial state

F ⊆ Q: a set of final states (or accepting states)

δ : Q × (Σ ∪ {ϵ}) → 2Q: transition function

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 19 / 56

Example

Definition of an NFA:

({0, 1, 2, 3}, {a, b}, δ, 0, {3})

δ(0, a) = {0, 1} δ(0, b) = {0}
δ(1, a) = ∅ δ(1, b) = {2}
δ(2, a) = ∅ δ(2, b) = {3}
δ(3, a) = ∅ δ(3, b) = ∅

The transition graph:

0start 1 2 3
a b b

a,b

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 20 / 56

Example

The transition table:

State a b ϵ

0 {0, 1} {0} ∅
1 ∅ {2} ∅
2 ∅ {3} ∅
3 ∅ ∅ ∅

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 21 / 56

String Recognition

An NFA recognizes a string w if there is a path in the transition
graph labeled by w.

0start 1 2 3
a b b

a,b

String aabb is accepted because

0
a→ 0

a→ 1
b→ 2

b→ 3

In general, the automaton recognizes any strings that end with abb:

L = {wabb | w ∈ {a, b}∗}

The language of an NFA is the set of recognizable strings.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 22 / 56

Exercises

Find the languages of the NFAs:

q0start

a, b

q0start

q1

q2

a

b

a, b

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 23 / 56

Exercises

0start

1 2

3 4

ϵ

a

ϵ

b

a

b

q0start q1 q2 q6 q3 q4 q5
a a ϵ b b b

ϵ ϵ

ϵ ϵ

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 24 / 56

Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

1 there are no moves on ϵ, and

2 for each state and input symbol, the next state is unique.

Definition (DFA)

A deterministic finite automaton (or DFA) is defined by a tuple of five
components:

M = (Q,Σ, δ, q0, F)

where

Q: a finite set of states

Σ: a finite set of input symbols (or input alphabet)

δ : Q × Σ → Q: a total function called transition function

q0 ∈ Q: the initial state

F ⊆ Q: a set of final states

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 25 / 56

Example

A DFA that accepts (a | b)∗abb:

0start 1 2 3
a b b

a

a

bb

a

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 26 / 56

Exercise 1

What is the language of the DFA?

q0start q1 q2

q3

a b

b
a

a, b

a, b

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 27 / 56

Exercise 2

What is the language of the DFA?

q0start q1 q2
0 1

1 0

0

1

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 28 / 56

Summary

NFAs and DFAs are string recognizers.

DFAs provide a concrete algorithm for recognizing strings.

NFAs bridge the gap between REs and DFAs:
▶ REs are descriptive but not executable.
▶ DFAs are executable but not descriptive.
▶ NFAs are in-between the REs and DFAs.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 29 / 56

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

RE NFA DFA
Thompson’s
construction

subset
construction

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 30 / 56

From REs to NFAs

Transform a given regular expression into a semantically equivalent NFAs:

RE2NFA
compilerregular expression NFA

the language of the RE the language of the NFA

An instance of compilation, where

source language is regular expressions and target language is NFAs

the correctness is defined by the equivalence of the denoted languages

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 31 / 56

Principles of Compilation

Every automatic compilation

1 is done “compositionally”, and

2 maintains some “invariants” during compilation.

Compilation of regular expressions, e.g., R1|R2:

1 The compilation of R1|R2 is defined in terms of the compilation of
R1 and R2.

2 Compiled NFAs for R1 and R2 satisfy the invariants:
▶ an NFA has exactly one accepting state,
▶ no arcs into the initial state, and
▶ no arcs out of the accepting state.

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 32 / 56

The Source Language

R → ∅
| ϵ
| a ∈ Σ
| R1 | R2

| R1 · R2

| R∗
1

| (R)

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 33 / 56

Compilation

Base cases:

R = ϵ:

✏

a

R = ∅

✏

aR = a (∈ Σ)

✏

a

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 34 / 56

Compilation

Inductive cases:

R = R1|R2:
1 Compile R1 and R2:

R1

R2

✏

✏

✏

✏

R1

R2

2 Compile R1|R2 using the results:

R1

R2

✏

✏

✏

✏

R1

R2

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 35 / 56

Compilation

R = R1 · R2:
1 Compile R1 and R2:

R1 R2

R1 R2
✏2 Compile R1 · R2 using the results:

R1 R2

R1 R2
✏

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 36 / 56

Compilation

R = R∗
1:

1 Compile R1:

R1

R1

✏

✏ ✏

✏

2 Compile R∗
1 using the results:

R1

R1

✏

✏ ✏

✏

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 37 / 56

Examples

0 · 1∗:

(0|1) · 0 · 1:

(0|1)∗ · 1 · (0|1):

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 38 / 56

From NFA to DFA

Transform an NFA
(N,Σ, δN , n0, NA)

into an equivalent DFA

(D,Σ, δD, d0, DA).

Running example:

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 39 / 56

ϵ-Closures

ϵ-closure(I): the set of states reachable from I without consuming any
symbols.

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

ϵ-closure({1}) = {1, 2, 3, 4, 6, 9}
ϵ-closure({1, 5}) = {1, 2, 3, 4, 6, 9} ∪ {3, 4, 5, 6, 8, 9}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 40 / 56

Subset Construction

Input: an NFA (N,Σ, δN , n0, NA).

Output: a DFA (D,Σ, δD, d0, DA).

Key Idea: the DFA simulates the NFA by considering every possibility
at once. A DFA state d ∈ D is a set of NFA state, i.e., d ⊆ N .

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 41 / 56

Running Example (1/5)

The initial DFA state d0 = ϵ-closure({0}) = {0}.

{0}start

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 42 / 56

Running Example (2/5)

For the initial state S, consider every x ∈ Σ and compute the
corresponding next states:

ϵ-closure(
⋃
s∈S

δ(s, a)).

ϵ-closure(
⋃

s∈{0} δ(s, a)) = {1, 2, 3, 4, 6, 9}
ϵ-closure(

⋃
s∈{0} δ(s, b)) = ∅

ϵ-closure(
⋃

s∈{0} δ(s, c)) = ∅

{0}start
{1, 2, 3,
4, 6, 9}

a

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 43 / 56

Running Example (3/5)

For the state {1, 2, 3, 4, 6, 9}, compute the next states:

ϵ-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, a)) = ∅
ϵ-closure(

⋃
s∈{1,2,3,4,6,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}

ϵ-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 44 / 56

Running Example (4/5)

Compute the next states of {3, 4, 5, 6, 8, 9}:
ϵ-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, a)) = ∅

ϵ-closure(
⋃

s∈{3,4,5,6,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ϵ-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 45 / 56

Running Example (5/5)

Compute the next states of {3, 4, 6, 7, 8, 9}:
ϵ-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, a)) = ∅

ϵ-closure(
⋃

s∈{3,4,6,7,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ϵ-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b

b

c

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 46 / 56

Subset Construction Algorithm

15

{0}start {1, 2, 3, 4, 6, 9}

{3, 4, 5, 6, 8, 9}

{3, 4, 6, 7, 8, 9}

a

b

c

c

b

b

c

This precise algorithm is as follows:

Algorithm 1 Subset construction

Input: An NFA (N,ω, εN , n0, NA)
Output: An equivalent DFA (D,ω, εD, d0, DA)
d0 = ϑ-closure({n0})
D = {d0}
W = {d0}
while W →= ↑ do

remove q from W
for c ↓ ω do

t = ϑ-closure(
⋃

s→q ε(s, c))
D = D ↔ {t}
εD(q, c) = t
if t was newly added to D then

W = W ↔ {t}
end if

end for
end while
DA = {q ↓ D | q ↗ NA →= ↑}

The algorithm first constructs the initial state d0 by closuring n0; d0 contains n0 and any other
states reachable from n0 along ω-transitions. The algorithm initializes the set of DFA states D by
the singleton set d0. It also maintains a set of states, called worklist, and initialize the set W by
d0.

The algorithm proceeds by removing a state q from W . Then, it considers every character c in
the alphabet, and compute the set of NFA states that are reachable from states in q by consuming
c and following any ω-transitions. Let t be the result. We update the transition table. When t is
a new state that has not been considered so far, we add t to W . Otherwise no update is done
on these sets. The while-loop is repeated until the worklist is empty. The outer loop eventually
terminates, because S always grows and the number of NFA states is finite.

Example 11. Consider the NFA again:

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 47 / 56

Running Example (1/5)

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

The initial state d0 = ϵ-closure({0}) = {0}. Initialize D and W :

D = {{0}}, W = {{0}}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 48 / 56

Running Example (2/5)

Choose q = {0} from W . For all c ∈ Σ, update δD:

a b c

{0} {1, 2, 3, 4, 6, 9} ∅ ∅

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}}, W = {{1, 2, 3, 4, 6, 9}}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 49 / 56

Running Example (3/5)

Choose q = {1, 2, 3, 4, 6, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 50 / 56

Running Example (4/5)

Choose q = {3, 4, 5, 6, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 6, 7, 8, 9}}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 51 / 56

Running Example (5/5)

Choose q = {3, 4, 6, 7, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 6, 7, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = ∅

The while loop terminates. The accepting states:

DA = {{1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 52 / 56

Algorithm for computing ϵ-Closures

The definition

ϵ-closure(I) is the set of states reachable from I
without consuming any symbols.

is neither formal nor constructive.

A formal definition:
T = ϵ-closure(I) is the smallest set such that

I ∪
⋃
s∈T

δ(s, ϵ) ⊆ T.

Alternatively, T is the smallest solution of the equation

F (X) ⊆ (X)

where
F (X) = I ∪

⋃
s∈X

δ(s, ϵ).

Such a solution is called the least fixed point of F .
Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 53 / 56

Fixed Point Iteration

The least fixed point of a function can be computed by the fixed point
iteration:

T = ∅
repeat
T ′ = T
T = T ′ ∪ F (T ′)

until T = T ′

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 54 / 56

Example

0start 1 2 3

4 5

6 7

8 9
a ϵ ϵ

ϵ

ϵ

b

c

ϵ

ϵ

ϵ
ϵ

ϵ

ϵ-closure({1}):
Iteration T ′ T

1 ∅ {1}
2 {1} {1, 2}
3 {1, 2} {1, 2, 3, 9}
4 {1, 2, 3, 9} {1, 2, 3, 4, 6, 9}
5 {1, 2, 3, 4, 6, 9} {1, 2, 3, 4, 6, 9}

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 55 / 56

Summary

Key concepts in lexical analysis:

Specification: Regular expressions

Implementation: Deterministic Finite Automata

Hakjoo Oh COSE312 2025 Spring, Lecture 2 March 11, 2025 56 / 56

	Regular Expressions

