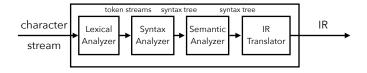
COSE312: Compilers Lecture 2 — Lexical Analysis

Hakjoo Oh 2025 Spring

Lexical Analysis



ex) Given a C program

```
float match0 (char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
  return 0.0;
}
```

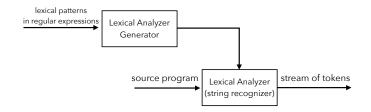
the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s) COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN RETURN REAL(0.0) SEMI RBRACE EOF

Specification, Recognition, and Automation

- **Specification**: how to specify lexical patterns?
 - ▶ In C, identifiers are strings like x, xy, match0, and _abc.
 - Numbers are strings like 3, 12, 0.012, and 3.5E4.
 - \Rightarrow regular expressions
- **Recognition**: how to recognize the lexical patterns?
 - Recognize match0 as an identifier.
 - Recognize 512 as a number.
 - \Rightarrow deterministic finite automata.
- Automation: how to automatically generate string recognizers from specifications?
 - \Rightarrow Thompson's construction and subset construction

cf) Lexical Analyzer Generator



- lex: a lexical analyzer generator for C
- jlex: a lexical analyzer generator for Java
- ocamllex: a lexical analyzer generator for OCaml

Part 1: Specification

- Preliminaries: alphabets, strings, languages
- Syntax and semantics of regular expressions
- Extensions of regular expressions

Alphabet

An alphabet Σ is a finite, non-empty set of symbols. E.g,

Σ = {0,1}
Σ = {a, b, ..., z}

Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1, 01, 10110 are strings over $\Sigma = \{0, 1\}$. Notations:

- *ϵ*: the empty string.
- wv: the concatenation of w and v.
- w^R : the reverse of w.
- |w|: the length of string w:

$$egin{array}{ccc} |\epsilon| &= 0 \ |va| &= |v|+1 \end{array}$$

- If w = vu, then v is a *prefix* of w, and u is a *suffix* of w.
- Σ^k : the set of strings over Σ of length k
- Σ^* : the set of all strings over alphabet Σ :

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = igcup_{i \in \mathbb{N}} \Sigma^i$$

•
$$\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \Sigma^* \setminus \{\epsilon\}$$

Languages

A language L is a subset of Σ^* : $L \subseteq \Sigma^*$.

$$egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{arr$$

•
$$\overline{L} = \Sigma^* - L$$

•
$$L_1L_2=\{xy\mid x\in L_1\wedge y\in L_2\}$$

• The *power* of a language, L^n :

$$L^0 = \{\epsilon\}$$
$$L^n = L^{n-1}L$$

• The star-closure (or Kleene closure) of a language, L*:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = igcup_{i \ge 0} L^i$$

• The *positive closure* of a language, L^+ :

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = igcup_{i \ge 1} L^i$$

Regular Expressions

A regular expression is a notation to denote a language.

• Syntax

Semantics

Example

$$\begin{split} L(a^* \cdot (a \mid b)) &= L(a^*)L(a \mid b) \\ &= (L(a))^*(L(a) \cup L(b)) \\ &= (\{a\})^*(\{a\} \cup \{b\}) \\ &= \{\epsilon, a, aa, aaa, \ldots\}(\{a, b\}) \\ &= \{a, aa, aaa, \ldots, b, ab, aab, \ldots\} \end{split}$$

Exercises

Write regular expressions for the following languages:

- The set of all strings over $\Sigma = \{a, b\}.$
- The set of strings of *a*'s and *b*'s, terminated by *ab*.
- The set of strings with an even number of *a*'s followed by an odd number of *b*'s.
- The set of C identifiers.

Regular Definitions

Give names to regular expressions and use the names in subsequent expressions, e.g., the set of C identifiers:

$$\begin{array}{rcl} letter & \rightarrow & \mathbb{A} \mid \mathbb{B} \mid \cdots \mid \mathbb{Z} \mid \mathbb{a} \mid \mathbb{b} \mid \cdots \mid \mathbb{z} \mid _\\ digit & \rightarrow & 0 \mid 1 \mid \cdots \mid 9\\ id & \rightarrow & letter(letter \mid digit)^* \end{array}$$

Formally, a *regular definition* is a sequence of definitions of the form:

$$egin{array}{cccc} d_1 & o & r_1 \ d_2 & o & r_2 \ & \cdots \ d_n & o & r_n \end{array}$$

• Each d_i is a new name such that $d_i \not\in \Sigma$.

2 Each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, \ldots, d_{i-1}\}$.

Hakjoo Oh

Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234, 6.336E4, or 1.89E-4:

$$\begin{array}{rcl} digit & \rightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ digits & \rightarrow & digit \ digit^* \\ optionalFraction & \rightarrow & . \ digits \mid \epsilon \\ optionalExponent & \rightarrow & (E \ (+ \mid - \mid \epsilon) \ digits) \mid \epsilon \\ number & \rightarrow & digits \ optionalFraction \ optionalExponent \end{array}$$

Extensions of Regular Expressions

- **Q** R^+ : the positive closure of R, i.e., $L(R^+) = L(R)^+$.
- 2 R?: zero or one instance of R, i.e., $L(R?) = L(R) \cup \{\epsilon\}$.
- **③** $[a_1a_2\cdots a_n]$: the shorthand for $a_1\mid a_2\mid \cdots \mid a_n$.
- **3** $[a_1-a_n]$: the shorthand for $[a_1a_2\cdots a_n]$, where a_1,\ldots,a_n are consecutive symbols.

$$\bullet \ [abc] = a \mid b \mid c$$

$$\bullet \ [a-z] = a \mid b \mid \cdots \mid z.$$

Examples

• C identifiers:

$$egin{array}{rcl} letter &
ightarrow & [A-Za-z_] \ digit &
ightarrow & [0-9] \ id &
ightarrow & letter \ (letter | digit)^* \end{array}$$

• Unsigned numbers:

$$\begin{array}{rcl} digit &
ightarrow & [0-9] \\ digits &
ightarrow & digit^+ \\ number &
ightarrow & digits \ (. \ digits)? \ (E \ [+-]? \ digits)? \end{array}$$

Summary

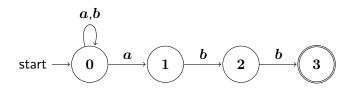
- **Specification**: how to specify lexical patterns?
 - ▶ In C, identifiers are strings like x, xy, match0, and _abc.
 - Numbers are strings like 3, 12, 0.012, and 3.5E4.
 - \Rightarrow regular expressions
- **2 Recognition**: how to *recognize* the lexical patterns?
 - Recognize match0 as an identifier.
 - Recognize 512 as a number.
 - \Rightarrow deterministic finite automata.
- Automation: how to automatically generate string recognizers from specifications?
 - \Rightarrow Thompson's construction and subset construction

Part 2: String Recognition by Finite Automata

- Non-deterministic finite automata
- Deterministic finite automata

String Recognizer in NFA

An NFA that recognizes strings $(a|b)^*abb$:



Non-deterministic Finite Automata

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

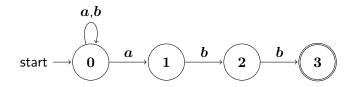
- Q: a finite set of states
- Σ : a finite set of *input symbols* (or input alphabet). We assume that $\epsilon \not\in \Sigma$.
- $q_0 \in Q$: the initial state
- $F \subseteq Q$: a set of final states (or accepting states)
- $\delta: Q imes (\Sigma \cup \{\epsilon\}) o 2^Q$: transition function

Example

Definition of an NFA:

$$\begin{array}{ll} (\{0,1,2,3\},\{a,b\},\delta,0,\{3\})\\ \delta(0,a)=\{0,1\} & \delta(0,b)=\{0\}\\ \delta(1,a)=\emptyset & \delta(1,b)=\{2\}\\ \delta(2,a)=\emptyset & \delta(2,b)=\{3\}\\ \delta(3,a)=\emptyset & \delta(3,b)=\emptyset \end{array}$$

The transition graph:



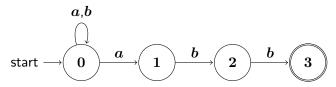
Example

The transition table:

State	a	b	ϵ
0	$\{0,1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

String Recognition

• An NFA recognizes a string w if there is a path in the transition graph labeled by w.



String aabb is accepted because

 $0 \stackrel{a}{\rightarrow} 0 \stackrel{a}{\rightarrow} 1 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 3$

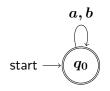
In general, the automaton recognizes any strings that end with abb:

$$L=\{wabb\mid w\in\{a,b\}^*\}$$

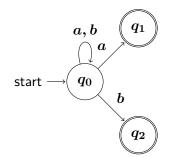
• The *language* of an NFA is the set of recognizable strings.

Exercises

Find the languages of the NFAs:



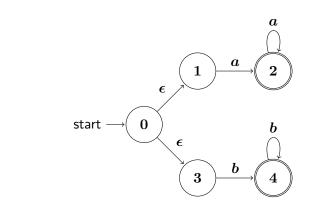
٠

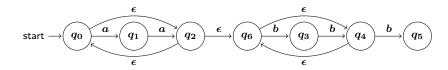


Exercises

۲

۲





Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

- (1) there are no moves on ϵ , and
- If or each state and input symbol, the next state is unique.

Definition (DFA)

A *deterministic finite automaton* (or *DFA*) is defined by a tuple of five components:

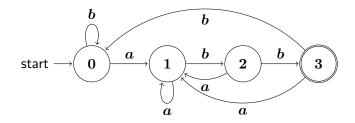
$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- Σ: a finite set of *input symbols* (or input alphabet)
- $\delta: Q imes \Sigma o Q$: a total function called transition function
- $q_0 \in Q$: the initial state
- $F \subseteq Q$: a set of final states

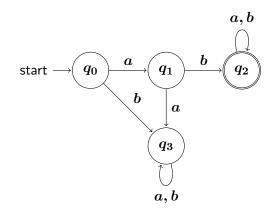
Example

A DFA that accepts $(a \mid b)^*abb$:



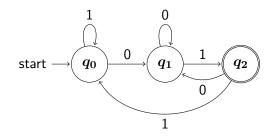
Exercise 1

What is the language of the DFA?



Exercise 2

What is the language of the DFA?



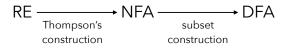
Summary

NFAs and DFAs are string recognizers.

- DFAs provide a concrete algorithm for recognizing strings.
- NFAs bridge the gap between REs and DFAs:
 - REs are descriptive but not executable.
 - DFAs are executable but not descriptive.
 - NFAs are in-between the REs and DFAs.

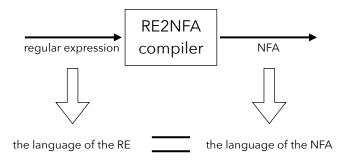
Part 3: Automation

Transform the lexical specification into an executable string recognizers:



From REs to NFAs

Transform a given regular expression into a semantically equivalent NFAs:



An instance of compilation, where

- source language is regular expressions and target language is NFAs
- the correctness is defined by the equivalence of the denoted languages

Principles of Compilation

Every automatic compilation

- is done "compositionally", and
- 2 maintains some "invariants" during compilation.

Compilation of regular expressions, e.g., $R_1|R_2$:

- The compilation of $R_1|R_2$ is defined in terms of the compilation of R_1 and R_2 .
- ② Compiled NFAs for R_1 and R_2 satisfy the invariants:
 - an NFA has exactly one accepting state,
 - no arcs into the initial state, and
 - no arcs out of the accepting state.

The Source Language

$$egin{array}{ccccc} R & o & \emptyset \ & | & \epsilon \ & | & a \in \Sigma \ & | & R_1 \mid R_2 \ & | & R_1 \cdot R_2 \ & | & R_1^* \ & | & (R) \end{array}$$

33 / 56

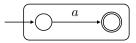
Compilation

Base cases:

• $R = \epsilon$:

• $R = \emptyset$

• $R = a \ (\in \Sigma)$

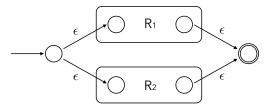


Compilation

Inductive cases:

- $R = R_1 | R_2$:
 - **()** Compile R_1 and R_2 :

2 Compile $R_1|R_2$ using the results:



Compilation

• $R = R_1 \cdot R_2$:

() Compile R_1 and R_2 :

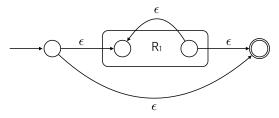
2 Compile $R_1 \cdot R_2$ using the results:

$$- \begin{array}{c|c} \bullet & & \bullet \\ \hline \bullet & & \bullet \\ \bullet & & \bullet \\ \hline \bullet & \bullet \\ \bullet & & \bullet \\ \hline \bullet & & \bullet \\ \bullet & \bullet \\ \bullet & & \bullet \\ \bullet & & \bullet \\ \bullet & & \bullet \\ \bullet &$$

Compilation

• $R = R_1^*$: • Compile R_1 :

2 Compile R_1^* using the results:



37 / 56

Examples

- 0 · 1*:
- $(0|1) \cdot 0 \cdot 1$:
- $(0|1)^* \cdot 1 \cdot (0|1)$:

From NFA to DFA

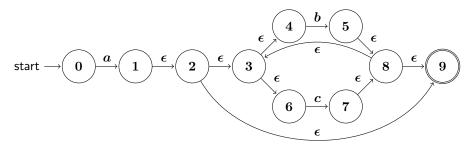
Transform an NFA

$$(N,\Sigma,\delta_N,n_0,N_A)$$

into an equivalent DFA

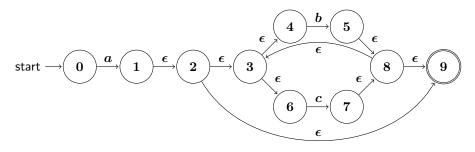
$$(D, \Sigma, \delta_D, d_0, D_A).$$

Running example:



ϵ -Closures

 ϵ -closure(I): the set of states reachable from I without consuming any symbols.



$$\begin{array}{lll} \epsilon\text{-closure}(\{1\}) &=& \{1,2,3,4,6,9\} \\ \epsilon\text{-closure}(\{1,5\}) &=& \{1,2,3,4,6,9\} \cup \{3,4,5,6,8,9\} \end{array}$$

Subset Construction

- Input: an NFA $(N, \Sigma, \delta_N, n_0, N_A)$.
- Output: a DFA $(D, \Sigma, \delta_D, d_0, D_A)$.
- Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $d \in D$ is a set of NFA state, i.e., $d \subseteq N$.

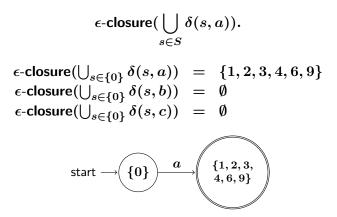
Running Example (1/5)

The initial DFA state $d_0 = \epsilon$ -closure $(\{0\}) = \{0\}$.

$$\mathsf{start} \longrightarrow \fbox{0}$$

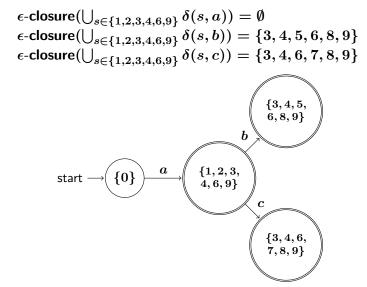
Running Example (2/5)

For the initial state S, consider every $x\in\Sigma$ and compute the corresponding next states:



Running Example (3/5)

For the state $\{1, 2, 3, 4, 6, 9\}$, compute the next states:



Running Example (4/5)

Compute the next states of $\{3, 4, 5, 6, 8, 9\}$:

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,a)) = \emptyset$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\}$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\}$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

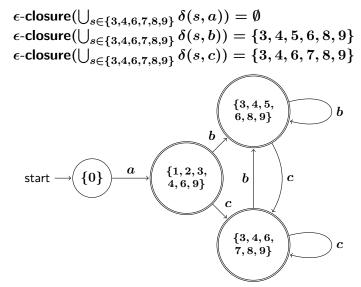
$$\{3,4,6,7,8,9\}$$

$$c$$

$$\{3,4,6,7,8,9\}$$

Running Example (5/5)

Compute the next states of $\{3, 4, 6, 7, 8, 9\}$:



Subset Construction Algorithm

Algorithm 1 Subset construction **Input**: An NFA $(N, \Sigma, \delta_N, n_0, N_A)$ **Output**: An equivalent DFA $(D, \Sigma, \delta_D, d_0, D_A)$ $d_0 = \epsilon \text{-closure}(\{n_0\})$ $D = \{d_0\}$ $W = \{d_0\}$ while $W \neq \emptyset$ do remove q from Wfor $c \in \Sigma$ do $t = \epsilon \text{-closure}(\bigcup_{s \in q} \delta(s, c))$ $D = D \cup \{t\}$ $\delta_D(q,c) = t$ if t was newly added to D then $W = W \cup \{t\}$ end if end for end while $D_A = \{ q \in D \mid q \cap N_A \neq \emptyset \}$

Running Example (1/5)



The initial state $d_0 = \epsilon$ -closure({0}) = {0}. Initialize D and W: $D = \{\{0\}\}, \qquad W = \{\{0\}\}$

Running Example (2/5)

Choose $q = \{0\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	c
{0}	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}\}, \qquad W = \{\{1, 2, 3, 4, 6, 9\}\}$

Running Example (3/5)

Choose $q = \{1, 2, 3, 4, 6, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	с
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
	,		

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$ $W = \{\{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

Running Example (4/5)

Choose $q = \{3, 4, 5, 6, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	c	b	a	
	Ø	Ø	$\{1, 2, 3, 4, 6, 9\}$	$\{0\}$
$8, 9\}$	$\{3, 4, 6, 7, 8$	$\{3,4,5,6,8,9\}$	Ø	$\{1,2,3,4,6,9\}$
$8,9\}$	$\{3, 4, 6, 7, 8$	$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$
8	$\{3, 4, 6, 7, 8\}$	$\{3, 4, 5, 6, 8, 9\}$	Ø	$\{3,4,5,6,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$
$$W = \{\{3, 4, 6, 7, 8, 9\}\}$$

Running Example (5/5)

Choose $q = \{3, 4, 6, 7, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	С
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

$$W = \emptyset$$

The while loop terminates. The accepting states:

 $D_A = \{\{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

52 / 56

Algorithm for computing ϵ -Closures

• The definition

 ϵ -closure(I) is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

• A formal definition:

 $T = \epsilon$ -closure(I) is the smallest set such that

$$I\cup igcup_{s\in T}\delta(s,\epsilon)\subseteq T.$$

ullet Alternatively, T is the smallest solution of the equation

 $F(X) \subseteq (X)$

where

$$F(X) = I \cup \bigcup_{s \in X} \delta(s, \epsilon).$$

Such a solution is called the least fixed point of F.

Hakjoo Oh

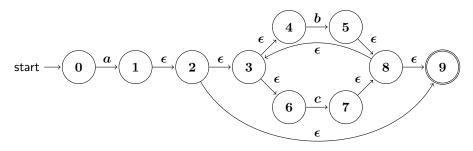
Fixed Point Iteration

The least fixed point of a function can be computed by the *fixed point iteration*:

$$T = \emptyset$$

repeat
 $T' = T$
 $T = T' \cup F(T')$
until $T = T'$

Example



ϵ -closure({1}):

Iteration	T'	T
1	Ø	{1}
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1,2,3,9\}$
4	$\{1, 2, 3, 9\}$	$\{1,2,3,4,6,9\}$
5	$\{1, 2, 3, 4, 6, 9\}$	$\{1,2,3,4,6,9\}$

Summary

Key concepts in lexical analysis:

- Specification: Regular expressions
- Implementation: Deterministic Finite Automata