
COSE312: Compilers

Lecture 18 — Course Review

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 1 / 8

Compilers

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

semantics of
source program

semantics of
target program

Compiler
source program target program

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 2 / 8

Structure of Modern Compilers

Front End Middle End Back End
source target IR IR

program program

The front-end understands the source program and translates it to an
intermediate representation (IR).

The middle-end takes a program in IR and optimizes it in terms of
efficiency, energy consumption, and so on.

The back-end transforms the IR program into machine-code.

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 3 / 8

Front End

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

The lexical analyzer transforms the character stream into a stream of
tokens.

The syntax analyzer transforms the stream of tokens into a syntax
tree.

The semantic analyzer checks if the program is semantically
well-formed.

The IR translator translates the syntax tree into IR.

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 4 / 8

Middle End

Transform IR to have better performance:

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

ex)
4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

original IR final IR

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 5 / 8

Back End

Generate the target machine code:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) from the IR

t2 = rate * 10

pos = init + t2

generate the machine code

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key component of compiler back-end is register allocation.

The remaining translation from IR to machine code is not difficult.

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 6 / 8

Summary

A modern compiler consists of three phases:

Front End Middle End Back End
source target IR IR

program program

Front end understands the syntax and semantics of source program.

Middle end improves the efficiency of the program.

Back end generates the target program.

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 7 / 8

한학기 수고 많았습니다!

Hakjoo Oh COSE312 2025 Spring, Lecture 18 June 5, 2025 8 / 8

