
COSE312: Compilers

Lecture 17 — Register Allocation1

Hakjoo Oh
2025 Spring

1Slides adapted from the materials by Alex Aiken at Stanford University
Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 1 / 26

Back-End of a Compiler

Generates the target machine code from IR:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

A key component of compiler back-end is register allocation.

The remaining translation from IR to machine code is technically not
difficult.

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 2 / 26

Register Allocation

Intermediate representation (IR) uses unlimited temporaries
▶ Simplifies code generation and optimization
▶ Complicates final translation to assembly

Typical intermediate code uses too many temporaries

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 3 / 26

Register Allocation

The problem:

Rewrite the intermediate code to use no more
temporaries than there are machine registers

Method:
▶ Assign multiple temporaries to each register
▶ But without changing the program behavior

Example:

a := c + d r1 := r2 + r3

e := a + b r1 := r1 + r4

f := e - 1 r1 := r1 - 1

(assume a and e dead after use)

A dead temporary can be reused.

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 4 / 26

Register Allocation

Register allocation is as old as compilers
▶ Register allocation was used in the original FORTRAN compiler in the

1950s
▶ Very crude algorithms

A breakthrough came in 1980
▶ Register allocation scheme based on graph coloring
▶ Relatively simple, global and works well in practice

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 5 / 26

Register Allocation

Temporaries t1 and t2 can share the same register if at any point in the
program at most one of t1 or t2 is live.

Or

If t1 and t2 are live at the same time, they cannot share a register.

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 6 / 26

Example

Compute live variables for each point: e.g.,

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 7 / 26

Register Allocation

Construct an undirected graph
▶ A node for each temporary
▶ An edge between t1 and t2 if they are live simultaneously at some

point in the program

This is the register interference graph (RIG).
▶ Two temporaries can be allocated to the same register if there is no

edge connecting them

For our example:
a

b

c

d

e

f

a

b

c

d

e

fr1

r2

r3

r4

r3

r2

▶ E.g., b and c cannot be in the same register
▶ E.g., b and d could be in the same register

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 8 / 26

Exercise

Construct the register interference graph:

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 9 / 26

Graph Coloring

A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colorsa

b

c

d

e

f

a

b

c

d

e

fr1

r2

r3

r4

r3

r2

A graph is k-colorable if it has a coloring with k colors.

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 10 / 26

Graph Coloring

In our problem, colors = registers
▶ We need to assign colors (registers) to graph nodes (temporaries)

Let k be the number of machine registers

If the RIG is k-colorable then there is a register assignment that uses
no more than k registers

Consider the example RIG:

a

b

c

d

e

f

a

b

c

d

e

fr1

r2

r3

r4

r3

r2

(There is no coloring with less than 4 colors)

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 11 / 26

Graph Coloring

Rename variables by the assigned registers:

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

r2:=r3+r4
r3:=-r2
r2:=r3+r1

r3:=r3+r2
r2:=r2-1r1:=2*r2

r3:=r1+r4

Graph Coloring

Rename variables by the assigned registers:

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

r2:=r3+r4
r3:=-r2
r2:=r3+r1

r3:=r3+r2
r2:=r2-1r1:=2*r2

r3:=r1+r4

=→

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

r2:=r3+r4
r3:=-r2
r2:=r3+r1

r3:=r3+r2
r2:=r2-1r1:=2*r2

r3:=r1+r4

Hakjoo Oh COSE312 2025 Spring, Lecture 15 January 10, 2025 12 / 27

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 12 / 26

Graph Coloring

How do we compute graph coloring?

It isn’t easy:
1 This problem is very hard (NP-hard). No efficient algorithms are

known.
⋆ Solution: use heuristics or constraint solvers

2 A coloring might not exist for a given number of registers.
⋆ Solution: “spilling”

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 13 / 26

Graph Coloring

Observation:
▶ Pick a node t with fewer than k neighbors in RIG
▶ Eliminate t and its edges from RIG
▶ If resulting graph is k-coloring, then so is the original graph

Why?
▶ Let c1, . . . , cn be the colors assigned to the neighbors of t in the

reduced graph
▶ Since n < k, we can pick some color for t that is different from those

of its neighbors

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 14 / 26

Graph Coloring

1 Push RIG nodes onto a stack:
▶ Pick a node t with fewer than k neighbors
▶ Put t on a stack and remove it from the RIG
▶ Repeat until the graph is empty

2 Assign colors to nodes on the stack
▶ Start with the last node added
▶ At each step pick a color different from those assigned to already

colored neighbors

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 15 / 26

Example

Assume k = 4:

a

b

c

d

e

f

a

b

c

d

e

fr1

r2

r3

r4

r3

r2

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 16 / 26

Spilling

What happens if the graph coloring heuristic fails to find a coloring?

In this case, we can’t hold all values in registers.
▶ Some values are spilled to memory

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 17 / 26

Spilling

What if all nodes have k or more neighbors?

Example: Try to find a 3-coloring of the RIG:
a

b

c

d

e

f

a

b

c

d

e

fr1

r2

r3

r4

r3

r2
Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 18 / 26

Spilling

Remove a and get stuck

b

c

d

e

f

b

c

d

e

r3

r1

r3

r2

?

b

c

d

e

f

Pick a node as a candidate for spilling
▶ A spilled value “lives” in memory
▶ Assume f is chosen

Remove f and continue the simplification. Simplification now
succeeds for b, d, e, c

b

c

d

e

f

b

c

d

e

r3

r1

r3

r2

?

b

c

d

e

f

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 19 / 26

Spilling

Eventually, we must assign a color to f

We hope that among the 4 neighbors of f we use less than 4 colors
(“optimistic coloring”)

b

c

d

e

f

b

c

d

e

r3

r1

r3

r2

?

b

c

d

e

f

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 20 / 26

Spilling

If optimistic coloring fails, we spill f
▶ Allocate a memory location for f
▶ Call this address a

Before each operation that reads f , insert

f := load a

Before each operation that writes f , insert

store f, a

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 21 / 26

Example

The code after spilling f:

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

a := b + c
d := -a
f1 := load fa
e := d + f1

b := d + e
e := e - 1

f2 := 2 * e
store f2, fa

f3 := load fa
b := f3 + c

Graph Coloring

Rename variables by the assigned registers:

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

r2:=r3+r4
r3:=-r2
r2:=r3+r1

r3:=r3+r2
r2:=r2-1r1:=2*r2

r3:=r1+r4

=→

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

{a,c,f}
{c,d,f}

{c,e}

{c,f}

{b}

{b}

{b,c,f}

{c,d,e,f}

{b,c,e,f}
{b,c,f}

a := 1

b := a * 2
c := c - b
a := b + 1
a < 16

d := c + 1

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1f := 2 * e

b := f + c

r2:=r3+r4
r3:=-r2
r2:=r3+r1

r3:=r3+r2
r2:=r2-1r1:=2*r2

r3:=r1+r4

Hakjoo Oh COSE312 2025 Spring, Lecture 15 January 10, 2025 12 / 27

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 22 / 26

Example

Recompute liveness:

a := b + c
d := -a
f1 := load fa
e := d + f1

b := d + e
e := e - 1

f2 := 2 * e
store f2, fa

f3 := load fa
b := f3 + c

{a,c}
{c,d}

{c,e}

{c}

{b}

{b}

{b,c}

{c,d,e}

{b,c,e}
{b,c}

{c,d,f1}

{c,f3}

{c,f2}

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 23 / 26

Spilling

New liveness information is almost as before

fi is live only
▶ Between a fi := load a and the next instruction
▶ Between a store fi, a and the preceding instruction

Spilling reduces the live range of f
▶ And thus reduces its interferences
▶ Which results in fewer RIG neighbors

a

b

c

d

e

f1 f3

f2

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 24 / 26

Spilling

Additional spills might be required before a coloring is found

The tricky part is deciding what to spill
▶ But any choice is correct

Possible heuristics:
▶ Spill temporaries with most conflicts
▶ Spill temporaries with few definitions and uses
▶ Avoid spilling in inner loops

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 25 / 26

Summary

Register allocation is a “must have” in compilers
▶ Because intermediate code uses too many temporaries
▶ Because it makes a big difference in performance

Hakjoo Oh COSE312 2025 Spring, Lecture 17 June 5, 2025 26 / 26

