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Middle End: Optimizer

Converts the source program into a more efficient yet semantically

equivalent program.

IR IR
»| Optimizer1 = IR IR —»| Optimizer n
ex)
tl = 10 =
tl 10 t2 = rate * 10 t2 = rate * 10
t2 = rate * ti t2 = rate * 10 ini
L S t3 = init + t2 pos = init + t2
t3 = init + t2 t3 = init + t2 os = t3
pos = t3 pos = t3 P
original IR final IR
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Common Optimization Passes

@ Common subexpressions elimination
Copy propagation
Deadcode elimination

o
o
o Constant folding
o
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Common Subexpression Elimination

@ An occurrence of an expression F is called a common subexpression if
E was previously computed and the values of the variables in E have
not changed since the previous computation.
x=2x*xk+1

... // no defs to k
y=2xk+1

@ We can avoid recomputing E by replacing E by the variable that
holds the previous value of E.
x=2x*xk+1

// no defs to k
y=x
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Copy Propagation

After the copy statement u = v, use v for u unless w is re-defined.

u=v u=v
x=u+1 x=v +1
u=x => u=x

y=u+?2 y=x+2

cf) Copy instructions can be generated during optimization, e.g., common
subexpression elimination.
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Deadcode Elimination

@ A variable is live at a point in a program if its value is used
eventually; otherwise it is dead at that point.

@ A statement is said to be deadcode if it computes values that never
get used.

v // deadcode
v+ 1
X. // deadcode
x + 2

< B XM B
I
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Constant Folding

Decide that the value of an expression is a constant and use the constant
instead.

c=1 c=1
=c+c => =2
y =X +X y=4
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Example: Original Program

Bl

i=m1

j=n

tl = 4%n

v = alt1]
!

16 = 4xi B5
x = alt6]

t7 = 4xi

t8 = 4%]j

t9 = alt8]

alt7] = t9

110 = 4%j

alt1e] = x

goto B2

t11 = 4xi

x = altl1l]
t12 = 4xi
t13 = 4%n
t14 = alt13]
altl12] = t14
t15 = 4%n
alt15] = x
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Example: Optimized Program

i=m-1

] n

t1 = 4*n B1
v = alt1]

i=1i+1
t2 = 4xi
t3 = alt2] B2
if t3<v goto B2

B6
alt2] = t5 t14 = a[t1]
alt4] = t3 alt2] = t14
goto B2 altl] = t3
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Static analysis is needed

To optimize a program, we need static analysis that derives information
about the flow of data along program execution paths. Examples:

@ Do the two textually identical expressions evaluate to the same value
along any possible execution path of the program? (If so, we can
apply common subexpression elimination)

@ Is the result of an assignment not used along any subsequent
execution path? (If so, we can apply deadcode elimination).
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Data-Flow Analysis

A collection of program analysis techniques that derive information about
the flow of data along program execution paths, enabling safe code
optimization, bug detection, etc.

@ Reaching definitions analysis
@ Live variables analysis

@ Available expressions analysis
@ Constant propagation analysis
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Reaching Definitions Analysis

o A definition d reaches a point p if there is a path from the definition
point to p such that d is not “killed” along that path.

d: x =1
x is not “killed”

A 4
e

@ For each program point, RDA finds definitions that can reach the
program point along some execution paths.
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Example: Reaching Definitions Analysis

‘ ENTRY ‘

i=m-1 IN(B1) = {}
ji=n
=ul 0UT(B1) = {d1,d2,d3}
i = i+1 IN(B2) = {d1,d2,d3,d5,d6,d7}
=1 0UT(B2) = {d3,d4,d5,d6}

IN(B3) = {d3,d4,d5,d6}
0uT(B3) = {d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}
ouT(B4) = {d3,d5,d6,d7}

[
I}
c
w

IN(EXIT) = {d3,d5,d6,d7}
OUT(EXIT) = {d3,d5,d6,d7}
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Applications

Reaching definitions analysis has many applications, e.g.,
@ Simple constant propagation

» For a use of variable v in statement n:
» |f the definitions of v that reach n are all of the form

» Replace the use of v in n by c
@ Uninitialized variable detection

» Put a definition at the program entry.
» For a use of variable x in statement n:

If d reaches n, x is potentially uninitialized.

v

@ Loop optimization
» If all of the reaching definitions of the operands of n are outside of the
loop, then n can be moved out of the loop (“loop-invariant code
motion” )
» while (...) {...; n:t z=x+1y; ... }
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The Analysis is Conservative

@ Exact reaching definitions information cannot be obtained at compile
time. It can be obtained only at runtime.

@ ex) Deciding whether each path can be taken is undecidable:
a =rand(); b = rand(); ¢ = rand(); k = rand();
if (ak + b’k != c"k) { // always true

// (1)
} else {

/7 (2)
}

@ RDA computes an over-approximation of the reaching definitions that
can be obtained at runtime.
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Reaching Definitions Analysis

The goal is to compute

in : Block — 2Definitions
out : Block — 2Deﬁm’tions

@ Compute gen/Kkill sets.
@ Derive transfer functions for each block in terms of gen/kill sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.
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1. Compute Gen/Kill Sets

gen : Block — 2Definitions
kil : Block — 2Definitions

e gen(B): the set of definitions “generated” at block B
o kill(B): the set of definitions "killed" at block B
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Example

i=m-1 gen(B1) = {d1,d2,d3}
l=n kill(B1) = {d4,d5,d6,d7}
a=ul

i= i+l gen(B2) = {d4,d5}

i o= j-1 kill(B2) = {d1,d2,d7}
gen(B3) = {d6}
kill(B3) = {d3}

v { }
_ gen(B4) = {d7
i=u3 ‘ Kill(B4) = {d1,d4}
v
‘ EXIT ‘
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Exercise
Compute the gen and kill sets for the basic block B:

dli: a =3
d2: a 4

o gen(B) = {d2}
o kill(B) = {di1,d2,...}
In general, when we have k definitions in a block B:

dl; d2; ...; d_k
e gen(B) =
gen(di) U (gen(di—1) — kill(di)) U (gen(dr—2) — kill(dr—1) —
kill(dg)) U - - - U (gen(dy) — kill(dz) — kill(ds) — - - - — kill(dg))
o kill(B) = kill(dy) U kill(dy) U - - - U kill(dy,)
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2. Transfer Functions

@ The transfer function is defined for each basic block B:

.fB . 2Deﬁnztzons N zDeﬁnztwns

@ The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

B2

d4:
d5:

i
i

i+l
j-1

{d1,d2,d3,d5,d6,d7}
{d3,d4,d5,d6}

@ The semantics of B is defined in terms of gen(B) and kill(B):

FB(X) = gen(X) U (X — kill(X))

B2

d4:
d5:

i
i

i+
J'_

1
1
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3. Derive Data-Flow Equations

ENTRY

Blld1: i = m-1
d2: j =n
d3: a =ul
l in(B1) =
i+l out(Bi) =
j-1
in(B2) =
out(B2) =
in(Bz) =
out(B3z) =
B | ) =
out(B4) =
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Data-Flow Equations

In general, the data-flow equations can be written as follows:

in(B;) = | out(P)

P—B;
out(B;) = fB,(in(B;))
= gen(B;) U (in(B;) — kill(B;))

where (<) is the control-flow relation.
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4. Solve the Equations

@ The desired solution is the least in and out that satisfies the
equations (why least?):

in(B;) = Upc,p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

@ The solution is defined as fiz F', where F' is defined as follows:
F (BlOCk — 2Deﬁnitions)2 — (BlOCk — 2Deﬁnition3)2

F(in,out) = (AB. [ ] out(P),AB.fg(in(B))
P—B

The least fixed point fiz F' is computed by

U F*(AxB.0, AB.0)

i>0
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Fixed Point Algorithm

The equations are solved by the iterative fixed point algorithm:

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update

in(B;) = Up, p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))
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Liveness Analysis

@ A variable is live at program point p if its value could be used in the
future (along some path starting at p).

p x is live p x is dead

x is not used
along all paths
from p to EXIT

w =X EXIT

@ Liveness analysis aims to compute the set of live variables for each
basic block of the program.
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Example: Liveness of Variables

We analyze liveness from the future to the past.

R

6
return c

@ The live range of b: {2 — 3,3 — 4}
@ The live range of a: {1 — 2,4 — 5 — 2} (not from 2 — 3 — 4)
@ The live range of c: the entire code
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Example: Liveness of Variables

1 l IN = {c}
‘ a==@ ‘ 0UT = {a,c}
_ l IN = {a,c}
b—i”l ‘0UT={b,c}
mEmps
a=bx2 | gt
1 _
a<N ‘ éﬁf:ﬁéfi}
|
6‘ return c ‘ (I)ﬁTZ{ﬂ
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Applications

@ Deadcode elimination
» Problem: Eliminate assignments whose computed values never get used.
» Solution: How?
» Suppose we have a statement:
» When z is dead at n, we can eliminate n.
@ Uninitialized variable detection
» Problem: Detect uninitialized use of variables
» Solution: How? Any variables live at the program entry (except for
parameters) are potentially uninitialized
@ Register allocation
» Problem: Rewrite the intermediate code to use no more temporaries
than there are machine registers

» Example:
a:=c+d rl :=r2 + r3
e :=a+b rl :=rl +r4d
f :=e -1 rl :=r1 -1

» Solution: How? Compute live ranges of variables. If two variables a
and b never live at the same time, assign the same register to them.
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Liveness Analysis

The goal is to compute

in : Block — 2Vor
out : Block — 2Ver

@ Compute def/use sets.
@ Derive transfer functions for each basic block in terms of def/use sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.
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Def/Use Sets

|
oe=e  JZE
b=i+1 fee 1

C=£+b ﬂg:iﬁ?c}

a=i*2 Gee 2 )

|
a<N b T tm

|
6| return c 3?: - ?C'}
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cf) Def/Use sets are only dynamically computable

In general, we need pointer analysis to compute (may/must) def/use sets.

l may must
om=e  JEITH me i
*xa = 0 -
information
def ={z} def ={z}
ae {x y} use ={a, b, x, y} use = { a, b, x }
b~ {2z
c—{a} def = { x, y } def = { x }
use={b, c, x,y,2} use={b, c, x, 2z}
must points-to def = {x, y} def = { x }
) i use ={a, b, z} use = {a, b, z}
information
a~{x} def = {} def = {}
b {z?} use = { a, x, y } use = {a, x}
cr-{al
6 def = {} def = {}
use ={c, x, y} use = { ¢, x }
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Data-Flow Equations

Intuitions:

© If a variable is in use(B), then it is live on entry to block B.
(Assume B has a single statement for simplicity)

@ If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

© If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:
in(B) = use(B) U (out(B) — def(B))
out(B) = [ ] in(S)

B—S
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Fixed Point Computation

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update
in(B;) = use(B;) U (out(B;) — def(B;))
out(B;) = Up,5 in(S)
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Example

def = {a}
use = {}

def = {b}
use = {a}

def = {c}
use = {b,c}

def = {a}
use = {b}

def = {}
use = {a}

6 def = {}
[ rewme JUEIG

1st 2nd 3rd
use def out in out in out in
6] {cJ 0 0 {c 0 (| 0 {a
5/ {a} 0 || {c} {arc}|{a,ct {arc}|{arct {asc}
4 {b} {a} || {a;c} {b,c} | {a,c} {b,c} | {a,c} {b,c}
3| {b,c} {c} {b,c} {b,c} | {b,c} {b,c} | {b,c} {b,c}
2 {a} {b} {b,c} {a,c} | {b,c} {a,c} | {b,c} {a,c}
1 0 {a} || {ayc} {c} |{a,c} {c} | {a;c} {c}
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Available Expressions Analysis

@ An expression x + y is available at a point p if every path from the
entry node to p evaluates « + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to « or y.

ENTRY
...—><+yH _><+yH —x+y‘

g

@ Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate

computations)

‘tl = x+y‘ ‘tl = x+y‘ ‘tl = x+y‘

12 = x+y
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Available Expressions Analysis

The goal is to compute

in : Block — 2E=pr
out : Block — 2FEzpr

© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.
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Gen/Kill Sets

e gen(B): the set of expressions evaluated and not subsequently killed
@ kill(B): the set of expressions whose variables can be killed
@ What expressions are generated and killed by each of statements?

Statement s | gen(s) ‘ kill(s)
r=y+=z {y + 2z} — kill(s) expressions containing
x = alloc(n) (1] expressions containing @
x = y[i] {y[i]} — kill(s) expressions containing
z[il =y 0 expressions of the form x[k]

(x = y + z generates y + z, but y = y + z does not because y is subsequently
killed.)
@ What expressions are generated and killed by the block?

a=b+c¢c
b=a—-d
c=b+c

d=a—d
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1. Set up a set of data-flow equations

Intuitions:
© At the entry, no expressions are available.

@ An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Lo J o2 J[ o ]

Equations:

in(ENTRY) =0
out(B) = gen(B) U (in(B) — kill(B))
in(B) = ﬂ out(B)

P—B
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2. Solve the equations

@ We are interested in the largest set satisfying the equation

@ Need to find the greatest solution (i.e., greatest fixed point) of the
equation.
in(ENTRY ) =0
For other B;,in(B;) = out(B;) = Expr
while (changes to any in and out occur) {
For all 2, update
in(B;) = Npe,p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))
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Constant Folding

Decide that the value of an expression is a constant and use it instead.
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Constant Propagation Analysis

For each program point, determine whether a variable has a constant value
whenever execution reaches that point.
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How It Works (1)
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How It Works (2)
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How It Works (3)
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Constant Analysis
The goal is to compute

in : Block — (Var — C)
out : Block — (Var — C)

where C is a partially ordered set:

T

7D

S22 A

N\

with the order:
Vei,c0 EC.ci Eegiffer =L Vea=T V oep =cg
Functions in Var — C are also partially ordered:

Vdi,d2 € (Var — C). d; C d; iff Ve € Var. di(x) C da(x)
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Join (Least Upper Bound)

The join between domain elements:

C2 Cc1 = €

C Co —
c1 e = 1 2 _

C1 C1 = C2

T o.W.

The join between abstract states:

diUdy = Az € Var. di(z) U da2(x)
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Transfer Function

The transfer function
fB:(Var - C) —» (Var — C)

models the program execution in terms of the abstract values: e.g.,

@ Transfer function for z = 3:
Ad. [z — 3]d
@ Transfer function for > 0:

Ad. d

@ Transfer function for y = z + 4:

[y — L]d d(z) =L
Ad. § [y— Tld d(z) =T
[y — d(z) + 4]d o.W.
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Transfer Function

A simple set of commands:

c > xz:=e|lx>n|
e > n|lxz|lert+ex|er —ez

The transfer function:

fri=e(d) = [z~ [e](d)]d
f:c>n(d) = d
[n](d) = n
[z](d) = d(=)
[e1+ex](d) = [e1](d)+[e2](d)
[er—e2](d) = [e1](d)—[e2](ad)
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Data-Flow Equations

Equation:

in(B) = | | out(P)

P—B
out(B) = fp(in(B))

Fixed point computation:

For all 2,in(B;) = out(B;) = Az.L
while (changes to any in and out occur) {
For all 2, update
in(B;) = L|p., 5, out(P)
out(B;) = fg,(in(B;))
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Summary

@ Data-flow analyses we covered:
» Reaching definitions analysis
> Liveness analysis

Available expressions analysis

» Constant propagation analysis

v

@ Optimization passes
» Common subexpression elimination
» Copy propagation
» Decode elimination
» Constant folding
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