COSE312: Compilers Lecture 16 — Optimization

Hakjoo Oh 2025 Spring

Middle End: Optimizer

Converts the source program into a more efficient yet semantically equivalent program.

Common Optimization Passes

- Common subexpressions elimination
- Copy propagation
- Deadcode elimination
- Constant folding

• ...

Common Subexpression Elimination

• An occurrence of an expression *E* is called a *common subexpression* if *E* was previously computed and the values of the variables in *E* have not changed since the previous computation.

$$x = 2 * k + 1$$

... // no defs to k
 $y = 2 * k + 1$

• We can avoid recomputing E by replacing E by the variable that holds the previous value of E.

Copy Propagation

After the copy statement u = v, use v for u unless u is re-defined.

 u = v u = v

 x = u + 1 x = v + 1

 u = x => u = x

 y = u + 2 y = x + 2

cf) Copy instructions can be generated during optimization, e.g., common subexpression elimination.

Deadcode Elimination

- A variable is *live* at a point in a program if its value is used eventually; otherwise it is *dead* at that point.
- A statement is said to be *deadcode* if it computes values that never get used.

```
u = v // \text{ deadcode}

x = v + 1

u = x. // \text{ deadcode}

y = x + 2
```

Constant Folding

Decide that the value of an expression is a constant and use the constant instead.

С	=	1				С	=	1
x	=	с	+	с	=>	x	=	2
у	=	х	+	x		у	=	4

Example: Original Program

Example: Optimized Program

Static analysis is needed

To optimize a program, we need static analysis that derives information about the flow of data along program execution paths. Examples:

- Do the two textually identical expressions evaluate to the same value along any possible execution path of the program? (If so, we can apply common subexpression elimination)
- Is the result of an assignment not used along any subsequent execution path? (If so, we can apply deadcode elimination).

Data-Flow Analysis

A collection of program analysis techniques that derive information about the flow of data along program execution paths, enabling safe code optimization, bug detection, etc.

- Reaching definitions analysis
- Live variables analysis
- Available expressions analysis
- Constant propagation analysis

• ...

Reaching Definitions Analysis

• A definition *d* reaches a point *p* if there is a path from the definition point to *p* such that *d* is not "killed" along that path.

• For each program point, RDA finds definitions that *can* reach the program point along some execution paths.

Example: Reaching Definitions Analysis

Applications

Reaching definitions analysis has many applications, e.g.,

- Simple constant propagation
 - For a use of variable v in statement n: n: x = ...v...
 - ullet If the definitions of v that reach n are all of the form d:v=c
 - Replace the use of v in n by c
- Uninitialized variable detection
 - Put a definition d: x = any at the program entry.
 - For a use of variable x in statement n: n: v = ...x...
 - If d reaches n, x is potentially uninitialized.

if
$$(...) x = 1;$$

•••

a = x

- Loop optimization
 - If all of the reaching definitions of the operands of n are outside of the loop, then n can be moved out of the loop ("loop-invariant code motion")

The Analysis is Conservative

- Exact reaching definitions information cannot be obtained at compile time. It can be obtained only at runtime.
- ex) Deciding whether each path can be taken is undecidable:

```
a = rand(); b = rand(); c = rand(); k = rand();
if (a^k + b^k != c^k) { // always true
    // (1)
} else {
    // (2)
}
```

• RDA computes an over-approximation of the reaching definitions that can be obtained at runtime.

Reaching Definitions Analysis

The goal is to compute

- in : $Block \rightarrow 2^{Definitions}$ out : $Block \rightarrow 2^{Definitions}$
- Compute gen/kill sets.
- 2 Derive transfer functions for each block in terms of gen/kill sets.
- Our prive the set of data-flow equations.
- Solve the equation by the iterative fixed point algorithm.

1. Compute Gen/Kill Sets

- gen(B): the set of definitions "generated" at block B
- kill(B): the set of definitions "killed" at block B

Example

Exercise

Compute the gen and kill sets for the basic block B:

d1: a = 3 d2: a = 4

•
$$gen(B) = \{d_2\}$$

• $kill(B) = \{d_1, d_2, \ldots\}$

In general, when we have k definitions in a block B:

d1; d2; ...; d_k

•
$$\operatorname{gen}(B) =$$

 $\operatorname{gen}(d_k) \cup (\operatorname{gen}(d_{k-1}) - \operatorname{kill}(d_k)) \cup (\operatorname{gen}(d_{k-2}) - \operatorname{kill}(d_{k-1}) -$
 $\operatorname{kill}(d_k)) \cup \cdots \cup (\operatorname{gen}(d_1) - \operatorname{kill}(d_2) - \operatorname{kill}(d_3) - \cdots - \operatorname{kill}(d_k))$
• $\operatorname{kill}(B) = \operatorname{kill}(d_1) + \operatorname{kill}(d_2) + \operatorname{kill}(d_2)$

• $\mathsf{kill}(B) = \mathsf{kill}(d_1) \cup \mathsf{kill}(d_2) \cup \cdots \cup \mathsf{kill}(d_k)$

2. Transfer Functions

• The transfer function is defined for each basic block *B*:

 $f_B: 2^{Definitions}
ightarrow 2^{Definitions}$

• The transfer function for a block *B* encodes the semantics of the block *B*, i.e., how the block transfers the input to the output.

$$B2 \begin{bmatrix} d4: i = i+1 \\ d5: j = j-1 \end{bmatrix} \{ d1, d2, d3, d5, d6, d7 \} \{ d3, d4, d5, d6 \}$$

• The semantics of B is defined in terms of gen(B) and kill(B):

$$f_B(X) = \operatorname{gen}(X) \cup (X - \operatorname{kill}(X))$$

B2 d	4: i	= i+1	gen(B2) = {d4,d5}
	5: j	= j-1	kill(B2) = {d1,d2,d7}

3. Derive Data-Flow Equations

Data-Flow Equations

In general, the data-flow equations can be written as follows:

$$\begin{split} \mathsf{in}(B_i) &= \bigcup_{P \hookrightarrow B_i} \mathsf{out}(P) \\ \mathsf{out}(B_i) &= f_{B_i}(\mathsf{in}(B_i)) \\ &= \mathsf{gen}(B_i) \cup (\mathsf{in}(B_i) - \mathsf{kill}(B_i)) \end{split}$$

where (\hookrightarrow) is the control-flow relation.

4. Solve the Equations

1

• The desired solution is the *least* in and **out** that satisfies the equations (why least?):

$$\begin{array}{lll} \mathsf{in}(B_i) &= & \bigcup_{P \hookrightarrow B_i} \mathsf{out}(P) \\ \mathsf{out}(B_i) &= & \mathsf{gen}(B_i) \cup (\mathsf{in}(B_i) - \mathsf{kill}(B_i)) \end{array}$$

• The solution is defined as *fix F*, where *F* is defined as follows:

$$F: (Block
ightarrow 2^{Definitions})^2
ightarrow (Block
ightarrow 2^{Definitions})^2$$

$$F(\mathsf{in},\mathsf{out}) = (\lambda B. \bigcup_{P \hookrightarrow B} \mathsf{out}(P), \lambda B. f_B(\mathsf{in}(B))$$

The least fixed point $\mathit{fix}F$ is computed by

$$igcup_{i\geq 0}F^i(\lambda B. \emptyset, \lambda B. \emptyset)$$

Fixed Point Algorithm

The equations are solved by the iterative fixed point algorithm:

For all i, $in(B_i) = out(B_i) = \emptyset$ while (changes to any in and out occur) { For all i, update $in(B_i) = \bigcup_{P \hookrightarrow B_i} out(P)$ $out(B_i) = gen(B_i) \cup (in(B_i) - kill(B_i))$ }

Liveness Analysis

• A variable is *live* at program point p if its value could be used in the future (along some path starting at p).

• Liveness analysis aims to compute the set of live variables for each basic block of the program.

Example: Liveness of Variables

We analyze liveness from the future to the past.

- The live range of $b: \{2
 ightarrow 3, 3
 ightarrow 4\}$
- ullet The live range of $a{:}\;\{1\to 2, 4\to 5\to 2\}\;({\sf not}\;{\sf from}\;2\to 3\to 4)$
- The live range of c: the entire code

Example: Liveness of Variables

Applications

- Deadcode elimination
 - > Problem: Eliminate assignments whose computed values never get used.
 - Solution: How?
 - Suppose we have a statement: n: x = y + z
 - When x is dead at n, we can eliminate n.
- Uninitialized variable detection
 - Problem: Detect uninitialized use of variables
 - Solution: How? Any variables live at the program entry (except for parameters) are potentially uninitialized
- Register allocation
 - Problem: Rewrite the intermediate code to use no more temporaries than there are machine registers
 - Example:

а	:=	с	+	d	r1	:=	r2	+	r3
е	:=	а	+	b	r1	:=	r1	+	r4
f	:=	е	-	1	r1	:=	r1	-	1

Solution: How? Compute live ranges of variables. If two variables a and b never live at the same time, assign the same register to them.

Hakjoo Oh

Liveness Analysis

The goal is to compute

in : $Block \rightarrow 2^{Var}$ out : $Block \rightarrow 2^{Var}$

- Compute def/use sets.
- 2 Derive transfer functions for each basic block in terms of def/use sets.
- Oerive the set of data-flow equations.
- Solve the equation by the iterative fixed point algorithm.

Def/Use Sets

cf) Def/Use sets are only dynamically computable

In general, we need *pointer analysis* to compute (may/must) def/use sets.

31 / 50

Data-Flow Equations

Intuitions:

- If a variable is in use(B), then it is live on entry to block B.
 (Assume B has a single statement for simplicity)
- If a variable is live at the end of block B, and not in def(B), then the variable is also live on entry to B.
- If a variable is live on enty to block B, then it is live at the end of predecessors of B.

Equations:

$$\begin{split} & \mathsf{in}(B) = \mathsf{use}(B) \cup (\mathsf{out}(B) - \mathsf{def}(B)) \\ & \mathsf{out}(B) = \bigcup_{B \hookrightarrow S} \mathsf{in}(S) \end{split}$$

Fixed Point Computation

```
For all i, in(B_i) = out(B_i) = \emptyset

while (changes to any in and out occur) {

For all i, update

in(B_i) = use(B_i) \cup (out(B_i) - def(B_i))

out(B_i) = \bigcup_{B_i \hookrightarrow S} in(S)

}
```

Example

def = {a} use = {} 1 a = 0 def = {b} use = {a} 2 b = a + 1 def = {c} use = {b,c} c = c + bdef = {a} use = {b} 4 a = b * 2def = {} use = {a} a < N 6 def = {} use = {c} return c

			1st		2nd		3rd	
	use	def	out	in	out	in	out	in
6	$\{c\}$	Ø	Ø	$\{c\}$	Ø	$\{c\}$	Ø	$\{c\}$
5	$\{a\}$	Ø	$\{c\}$	$\{a,c\}$	$\{a,c\}$	$\{a,c\}$	$\{a,c\}$	$\{a,c\}$
4	$\{b\}$	$\{a\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$
3	$\{b,c\}$	$\{c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$
2	$\{a\}$	{b}	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$
1	Ø	$\{a\}$	$ \{a,c\}$	$\{c\}$	$\{a,c\}$	$\{c\}$	$\{a,c\}$	$\{c\}$

Available Expressions Analysis

• An expression x + y is *available* at a point p if every path from the entry node to p evaluates x + y, and after the last such evaluation prior to reaching p, there are no subsequent assignments to x or y.

• Application: common subexpression elimination (i.e., given a program that computes *e* more than once, eliminate one of the duplicate computations)

Available Expressions Analysis

The goal is to compute

- $\begin{array}{lll} \mbox{in} & : & Block \rightarrow \mathcal{2}^{Expr} \\ \mbox{out} & : & Block \rightarrow \mathcal{2}^{Expr} \end{array}$
- Our prive the set of data-flow equations.
- **②** Solve the equation by the iterative fixed point algorithm.

Gen/Kill Sets

- gen(B): the set of expressions evaluated and not subsequently killed
- kill(B): the set of expressions whose variables can be killed
- What expressions are generated and killed by each of statements?

Statement s	gen(s)	kill(s)
x = y + z	$\{y+z\} - kill(s)$	expressions containing $m{x}$
x = alloc(n)	Ø	expressions containing $m{x}$
x = y[i]	$\{y[i]\} - kill(s)$	expressions containing $m{x}$
x[i]=y	Ø	expressions of the form $oldsymbol{x}[oldsymbol{k}]$

(x = y + z generates y + z, but y = y + z does not because y is subsequently killed.)

• What expressions are generated and killed by the block?

$$a=b+c$$

 $b=a-d$
 $c=b+c$
 $d=a-d$

1. Set up a set of data-flow equations

Intuitions:

- At the entry, no expressions are available.
- An expression is available at the entry of a block only if it is available at the end of *all* its predecessors.

Equations:

$$\begin{split} \mathsf{in}(ENTRY) &= \emptyset\\ \mathsf{out}(B) &= \mathsf{gen}(B) \cup (\mathsf{in}(B) - \mathsf{kill}(B))\\ \mathsf{in}(B) &= \bigcap_{P \to B} \mathsf{out}(B) \end{split}$$

2. Solve the equations

- We are interested in the largest set satisfying the equation
- Need to find the greatest solution (i.e., greatest fixed point) of the equation.

$$\begin{split} & \mathsf{in}(ENTRY) = \emptyset \\ & \mathsf{For other } B_i, \mathsf{in}(B_i) = \mathsf{out}(B_i) = Expr \\ & \mathsf{while} \text{ (changes to any in and out occur) } \{ \\ & \mathsf{For all } i, \mathsf{update} \\ & \mathsf{in}(B_i) = \bigcap_{P \hookrightarrow B_i} \mathsf{out}(P) \\ & \mathsf{out}(B_i) = \mathsf{gen}(B_i) \cup (\mathsf{in}(B_i) - \mathsf{kill}(B_i)) \\ \} \end{split}$$

Constant Folding

Decide that the value of an expression is a constant and use it instead.

Constant Propagation Analysis

For each program point, determine whether a variable has a constant value whenever execution reaches that point.

How It Works (1)

How It Works (2)

How It Works (3)

Constant Analysis

The goal is to compute

in :
$$Block \to (Var \to \mathbb{C})$$

out : $Block \to (Var \to \mathbb{C})$

where \mathbb{C} is a partially ordered set:

with the order:

$$orall c_1, c_2 \in \mathbb{C}. \ c_1 \sqsubseteq c_2 \ ext{iff} \ c_1 = ot \ \lor \ c_2 = ot \ \lor \ c_1 = c_2$$

Functions in $Var \rightarrow \mathbb{C}$ are also partially ordered:

 $orall d_1, d_2 \in (\mathit{Var}
ightarrow \mathbb{C}). \ d_1 \sqsubseteq d_2 \ ext{iff} \ orall x \in \mathit{Var}. \ d_1(x) \sqsubseteq d_2(x)$

Join (Least Upper Bound)

The join between domain elements:

$$c_1 \sqcup c_2 = \left\{egin{array}{cl} c_2 & c_1 = ot \ c_1 & c_2 = ot \ c_1 & c_1 = c_2 \ ot \ ot & c_1 = c_2 \ ot & o.w. \end{array}
ight.$$

The join between abstract states:

$$d_1 \sqcup d_2 = \lambda x \in \mathit{Var.} \ d_1(x) \sqcup d_2(x)$$

Transfer Function

The transfer function

$$f_B:(Var
ightarrow\mathbb{C})
ightarrow(Var
ightarrow\mathbb{C})$$

models the program execution in terms of the abstract values: e.g.,

• Transfer function for z = 3:

$$\lambda d. \ [z \mapsto 3]d$$

• Transfer function for x > 0:

 $\lambda d. d$

• Transfer function for y = z + 4:

$$\lambda d. \left\{ egin{array}{ccc} [y\mapsto ot] d & d(z) = ot\ [y\mapsto ot] d & d(z) = ot\ [y\mapsto ot] d & d(z) = ot\ [y\mapsto ot] (z) + 4] d & ext{o.w.} \end{array}
ight.$$

Transfer Function

A simple set of commands:

$$egin{array}{rcl} c &
ightarrow & x := e \mid x > n \mid \ e &
ightarrow & n \mid x \mid e_1 + e_2 \mid e_1 - e_2 \end{array}$$

The transfer function:

$$\begin{array}{rcl} f_{x:=e}(d) &=& [x\mapsto [\![e \]\!](d)]d\\ f_{x>n}(d) &=& d\\ & [\![n \]\!](d) &=& n\\ & [\![x \]\!](d) &=& d(x)\\ & [\![e_1+e_2 \]\!](d) &=& [\![e_1 \]\!](d) + [\![e_2 \]\!](d)\\ & [\![e_1-e_2 \]\!](d) &=& [\![e_1 \]\!](d) - [\![e_2 \]\!](d) \end{array}$$

Data-Flow Equations

Equation:

$$in(B) = \bigsqcup_{P \hookrightarrow B} out(P)$$
$$out(B) = f_B(in(B))$$

Fixed point computation:

For all
$$i$$
, $in(B_i) = out(B_i) = \lambda x. \bot$
while (changes to any in and out occur) {
For all i , update
 $in(B_i) = \bigsqcup_{P \hookrightarrow B_i} out(P)$
 $out(B_i) = f_{B_i}(in(B_i))$
}

Summary

- Data-flow analyses we covered:
 - Reaching definitions analysis
 - Liveness analysis
 - Available expressions analysis
 - Constant propagation analysis
- Optimization passes
 - Common subexpression elimination
 - Copy propagation
 - Decode elimination
 - Constant folding