
COSE312: Compilers

Lecture 16 — Optimization

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 1 / 50

Middle End: Optimizer

Converts the source program into a more efficient yet semantically
equivalent program.

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

ex) 4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

original IR final IR

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 2 / 50

Common Optimization Passes

Common subexpressions elimination

Copy propagation

Deadcode elimination

Constant folding

...

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 3 / 50

Common Subexpression Elimination

An occurrence of an expression E is called a common subexpression if
E was previously computed and the values of the variables in E have
not changed since the previous computation.

x = 2 * k + 1

... // no defs to k

y = 2 * k + 1

We can avoid recomputing E by replacing E by the variable that
holds the previous value of E.

x = 2 * k + 1

... // no defs to k

y = x

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 4 / 50

Copy Propagation

After the copy statement u = v, use v for u unless u is re-defined.

u = v u = v

x = u + 1 x = v + 1

u = x => u = x

y = u + 2 y = x + 2

cf) Copy instructions can be generated during optimization, e.g., common
subexpression elimination.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 5 / 50

Deadcode Elimination

A variable is live at a point in a program if its value is used
eventually; otherwise it is dead at that point.

A statement is said to be deadcode if it computes values that never
get used.

u = v // deadcode

x = v + 1

u = x. // deadcode

y = x + 2

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 6 / 50

Constant Folding

Decide that the value of an expression is a constant and use the constant
instead.

c = 1 c = 1

x = c + c => x = 2

y = x + x y = 4

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 7 / 50

Example: Original Program

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

t6 = 4*i
x = a[t6]
t7 = 4*i
t8 = 4*j
t9 = a[t8]
a[t7] = t9
t10 = 4*j
a[t10] = x
goto B2

t11 = 4*i
x = a[t11]
t12 = 4*i
t13 = 4*n
t14 = a[t13]
a[t12] = t14
t15 = 4*n
a[t15] = x

B1

B2

B3

B4

B5 B6

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 8 / 50

Example: Optimized Program

i = m-1
j = n
t1 = 4*n
v = a[t1]

i = i+1
t2 = 4*i
t3 = a[t2]
if t3<v goto B2

j = j-1
t4 = 4*j
t5 = a[t4]
if t5>v goto B3

if i>=j goto B6

a[t2] = t5
a[t4] = t3
goto B2

t14 = a[t1]
a[t2] = t14
a[t1] = t3

B1

B2

B3

B4

B5 B6

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 9 / 50

Static analysis is needed

To optimize a program, we need static analysis that derives information
about the flow of data along program execution paths. Examples:

Do the two textually identical expressions evaluate to the same value
along any possible execution path of the program? (If so, we can
apply common subexpression elimination)

Is the result of an assignment not used along any subsequent
execution path? (If so, we can apply deadcode elimination).

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 10 / 50

Data-Flow Analysis

A collection of program analysis techniques that derive information about
the flow of data along program execution paths, enabling safe code
optimization, bug detection, etc.

Reaching definitions analysis

Live variables analysis

Available expressions analysis

Constant propagation analysis

...

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 11 / 50

Reaching Definitions Analysis

A definition d reaches a point p if there is a path from the definition
point to p such that d is not “killed” along that path.

d1: i = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

d: x = 1

p

x is not “killed”

For each program point, RDA finds definitions that can reach the
program point along some execution paths.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 12 / 50

Example: Reaching Definitions Analysis

d1: i = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

IN(B1) = {}

OUT(B1) = {d1,d2,d3}

IN(B2) = {d1,d2,d3,d5,d6,d7}

OUT(B2) = {d3,d4,d5,d6}

OUT(B3) = {d4,d5,d6}
IN(B3) = {d3,d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}

OUT(B4) = {d3,d5,d6,d7}

IN(EXIT) = {d3,d5,d6,d7}

OUT(EXIT) = {d3,d5,d6,d7}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 13 / 50

Applications

Reaching definitions analysis has many applications, e.g.,
Simple constant propagation

▶ For a use of variable v in statement n: n : x = ...v...

▶ If the definitions of v that reach n are all of the form d : v = c
▶ Replace the use of v in n by c

Uninitialized variable detection
▶ Put a definition d: x = any at the program entry.

▶ For a use of variable x in statement n: n : v = ...x...
▶ If d reaches n, x is potentially uninitialized.
▶ ...

if (...) x = 1;

...

a = x

Loop optimization
▶ If all of the reaching definitions of the operands of n are outside of the

loop, then n can be moved out of the loop (“loop-invariant code
motion”)

▶ while (...) {...; n: z = x + y; ... }

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 14 / 50

The Analysis is Conservative

Exact reaching definitions information cannot be obtained at compile
time. It can be obtained only at runtime.

ex) Deciding whether each path can be taken is undecidable:

a = rand(); b = rand(); c = rand(); k = rand();

if (a^k + b^k != c^k) { // always true

// (1)

} else {

// (2)

}

RDA computes an over-approximation of the reaching definitions that
can be obtained at runtime.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 15 / 50

Reaching Definitions Analysis

The goal is to compute

in : Block → 2Definitions

out : Block → 2Definitions

1 Compute gen/kill sets.

2 Derive transfer functions for each block in terms of gen/kill sets.

3 Derive the set of data-flow equations.

4 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 16 / 50

1. Compute Gen/Kill Sets

gen : Block → 2Definitions

kill : Block → 2Definitions

gen(B): the set of definitions “generated” at block B

kill(B): the set of definitions “killed” at block B

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 17 / 50

Example

d1: i = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

gen(B1) = {d1,d2,d3}
kill(B1) = {d4,d5,d6,d7}

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}

gen(B4) = {d7}
kill(B4) = {d1,d4}

gen(B3) = {d6}
kill(B3) = {d3}

d4: i = i+1
d5: j = j-1

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 18 / 50

Exercise

Compute the gen and kill sets for the basic block B:

d1: a = 3

d2: a = 4

gen(B) = {d2}
kill(B) = {d1, d2, . . .}

In general, when we have k definitions in a block B:

d1; d2; ...; d_k

gen(B) =
gen(dk) ∪ (gen(dk−1) − kill(dk)) ∪ (gen(dk−2) − kill(dk−1) −
kill(dk)) ∪ · · · ∪ (gen(d1) − kill(d2) − kill(d3) − · · · − kill(dk))

kill(B) = kill(d1) ∪ kill(d2) ∪ · · · ∪ kill(dk)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 19 / 50

2. Transfer Functions

The transfer function is defined for each basic block B:

fB : 2Definitions → 2Definitions

The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

B2

d1: = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

IN(B1) = {}

OUT(B1) = {d1,d2,d3}

IN(B2) = {d1,d2,d3,d5,d6,d7}

OUT(B2) = {d3,d4,d5,d6}

OUT(B3) = {d4,d5,d6}
IN(B3) = {d3,d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}

OUT(B4) = {d3,d5,d6,d7}

IN(EXIT) = {d3,d5,d6,d7}

OUT(EXIT) = {d3,d5,d6,d7}

d4: i = i+1
d5: j = j-1

{d1,d2,d3,d5,d6,d7}

{d3,d4,d5,d6}

The semantics of B is defined in terms of gen(B) and kill(B):

fB(X) = gen(X) ∪ (X − kill(X))

B2

d1: i = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

gen(B1) =
kill(B1) =

gen(B2) =
kill(B2) =

gen(B4) =
kill(B4) =

gen(B3) =
kill(B3) =

d4: i = i+1
d5: j = j-1

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 20 / 50

3. Derive Data-Flow Equations

d1: i = m-1
d2: j = n
d3: a = u1

ENTRY

d4: i = i+1
d5: j = j-1

d6: a = u2

d7: i = u3

EXIT

B1

B2

B3

B4

IN(B1) = {}

OUT(B1) = {}

IN(B2) = {}

OUT(B2) = {}

OUT(B3) = {}
IN(B3) = {}

IN(B4) = {}

OUT(B4) = {}

IN(EXIT) = {}

OUT(EXIT) = {}

in(B1) = ∅
out(B1) = fB1(in(B1))

in(B2) = out(B1) ∪ out(B4)
out(B2) = fB2(in(B2))

in(B3) = out(B2)
out(B3) = fB3(in(B3))

in(B4) = out(B2) ∪ out(B3)
out(B4) = fB4(in(B4))

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 21 / 50

Data-Flow Equations

In general, the data-flow equations can be written as follows:

in(Bi) =
⋃

P ↪→Bi

out(P)

out(Bi) = fBi(in(Bi))

= gen(Bi) ∪ (in(Bi) − kill(Bi))

where (↪→) is the control-flow relation.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 22 / 50

4. Solve the Equations

The desired solution is the least in and out that satisfies the
equations (why least?):

in(Bi) =
⋃

P ↪→Bi
out(P)

out(Bi) = gen(Bi) ∪ (in(Bi) − kill(Bi))

The solution is defined as fixF , where F is defined as follows:

F : (Block → 2Definitions)2 → (Block → 2Definitions)2

F (in, out) = (λB.
⋃

P ↪→B

out(P), λB.fB(in(B))

The least fixed point fixF is computed by⋃
i≥0

F i(λB.∅, λB.∅)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 23 / 50

Fixed Point Algorithm

The equations are solved by the iterative fixed point algorithm:

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {
For all i, update
in(Bi) =

⋃
P ↪→Bi

out(P)

out(Bi) = gen(Bi) ∪ (in(Bi) − kill(Bi))
}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 24 / 50

Liveness Analysis

A variable is live at program point p if its value could be used in the
future (along some path starting at p).

p

… = x

x is live p

EXIT

x is dead

x is not used
along all paths
from p to EXIT

Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 25 / 50

Example: Liveness of Variables

We analyze liveness from the future to the past.

b = a + 1

a = 0

a < N

return c

1

3

4

5

2

c = c + b

a = b * 2

6

IN = {c}
OUT = {a,c}

IN = {a,c}
OUT = {b,c}

IN = {b,c}
OUT = {b,c}

IN = {b,c}
OUT = {a,c}

IN = {a,c}
OUT = {a,c}

IN = {c}
OUT = {}

The live range of b: {2 → 3, 3 → 4}
The live range of a: {1 → 2, 4 → 5 → 2} (not from 2 → 3 → 4)

The live range of c: the entire code

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 26 / 50

Example: Liveness of Variables

b = a + 1

a = 0

a < N

return c

1

3

4

5

2

c = c + b

a = b * 2

6

IN = {c}
OUT = {a,c}

IN = {a,c}
OUT = {b,c}

IN = {b,c}
OUT = {b,c}

IN = {b,c}
OUT = {a,c}

IN = {a,c}
OUT = {a,c}

IN = {c}
OUT = {}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 27 / 50

Applications

Deadcode elimination
▶ Problem: Eliminate assignments whose computed values never get used.
▶ Solution: How?
▶ Suppose we have a statement: n: x = y + z
▶ When x is dead at n, we can eliminate n.

Uninitialized variable detection
▶ Problem: Detect uninitialized use of variables
▶ Solution: How? Any variables live at the program entry (except for

parameters) are potentially uninitialized

Register allocation
▶ Problem: Rewrite the intermediate code to use no more temporaries

than there are machine registers
▶ Example:

a := c + d r1 := r2 + r3

e := a + b r1 := r1 + r4

f := e - 1 r1 := r1 - 1
▶ Solution: How? Compute live ranges of variables. If two variables a

and b never live at the same time, assign the same register to them.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 28 / 50

Liveness Analysis

The goal is to compute

in : Block → 2Var

out : Block → 2Var

1 Compute def/use sets.

2 Derive transfer functions for each basic block in terms of def/use sets.

3 Derive the set of data-flow equations.

4 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 29 / 50

Def/Use Sets

b = a + 1

a = 0

a < N

return c

1

3

4

5

2

c = c + b

a = b * 2

6

def = {a}
use = {}

def = {b}
use = {a}

def = {c}
use = {b,c}

def = {a}
use = {b}

def = {}
use = {a}

def = {}
use = {c}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 30 / 50

cf) Def/Use sets are only dynamically computable

In general, we need pointer analysis to compute (may/must) def/use sets.

*b = *a + 1

*a = 0

*a < N

return **c

1

3

4

5

2

**c = **c + *b

*a = *b * 2

6

may points-to
information

may

def = { x, y }
use = { a }

def = { z }
use = { a, b, x, y }

def = { x, y }
use = { b, c, x, y, z }

def = { x, y }
use = { a, b, z }

def = {}
use = { a, x, y }

def = {}
use = { c, x, y }

a { x, y }
b { z }
c { a }

↦
↦
↦

must points-to
information
a { x }
b { z }
c { a }

↦
↦
↦

must

def = { x }
use = { a }

def = { z }
use = { a, b, x }

def = { x }
use = { b, c, x, z }

def = { x }
use = { a, b, z }

def = {}
use = { a, x }

def = {}
use = { c, x }

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 31 / 50

Data-Flow Equations

Intuitions:

1 If a variable is in use(B), then it is live on entry to block B.
(Assume B has a single statement for simplicity)

2 If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

3 If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:

in(B) = use(B) ∪ (out(B) − def(B))

out(B) =
⋃

B↪→S

in(S)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 32 / 50

Fixed Point Computation

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {
For all i, update
in(Bi) = use(Bi) ∪ (out(Bi) − def(Bi))
out(Bi) =

⋃
Bi↪→S in(S)

}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 33 / 50

Example

b = a + 1

a = 0

a < N

return c

1

3

4

5

2

c = c + b

a = b * 2

6

def = {a}
use = {}

def = {b}
use = {a}

def = {c}
use = {b,c}

def = {a}
use = {b}

def = {}
use = {a}

def = {}
use = {c}

1st 2nd 3rd
use def out in out in out in

6 {c} ∅ ∅ {c} ∅ {c} ∅ {c}
5 {a} ∅ {c} {a, c} {a, c} {a, c} {a, c} {a, c}
4 {b} {a} {a, c} {b, c} {a, c} {b, c} {a, c} {b, c}
3 {b, c} {c} {b, c} {b, c} {b, c} {b, c} {b, c} {b, c}
2 {a} {b} {b, c} {a, c} {b, c} {a, c} {b, c} {a, c}
1 ∅ {a} {a, c} {c} {a, c} {c} {a, c} {c}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 34 / 50

Available Expressions Analysis

An expression x + y is available at a point p if every path from the
entry node to p evaluates x + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

ENTRY

p

… = x+y … = x+y… = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

s

p2 p3p1

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

entry

y = a+bx = a+b

y = a-b x = a-b

exit

a = 0

1

2 3

4

65

7

Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

ENTRY

p

… = x+y … = x+y… = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

s

p2 p3p1

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

entry

y = a+bx = a+b

y = a-b x = a-b

exit

a = 0

1

2 3

4

65

7

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 35 / 50

Available Expressions Analysis

The goal is to compute

in : Block → 2Expr

out : Block → 2Expr

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 36 / 50

Gen/Kill Sets

gen(B): the set of expressions evaluated and not subsequently killed

kill(B): the set of expressions whose variables can be killed

What expressions are generated and killed by each of statements?

Statement s gen(s) kill(s)
x = y + z {y + z} − kill(s) expressions containing x
x = alloc(n) ∅ expressions containing x
x = y[i] {y[i]} − kill(s) expressions containing x
x[i] = y ∅ expressions of the form x[k]

(x = y + z generates y + z, but y = y + z does not because y is subsequently

killed.)

What expressions are generated and killed by the block?

a = b + c
b = a − d
c = b + c
d = a − d

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 37 / 50

1. Set up a set of data-flow equations

Intuitions:

1 At the entry, no expressions are available.

2 An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

ENTRY

p

… = x+y … = x+y… = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

s

p2 p3p1

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

ENTRY

t2 = x+y

t1 = x+y t1 = x+yt1 = x+y

entry

y = a+bx = a+b

y = a-b x = a-b

exit

a = 0

1

2 3

4

65

7

Equations:

in(ENTRY) = ∅
out(B) = gen(B) ∪ (in(B) − kill(B))

in(B) =
⋂

P→B

out(B)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 38 / 50

2. Solve the equations

We are interested in the largest set satisfying the equation

Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY) = ∅
For other Bi, in(Bi) = out(Bi) = Expr
while (changes to any in and out occur) {
For all i, update

in(Bi) =
⋂

P ↪→Bi
out(P)

out(Bi) = gen(Bi) ∪ (in(Bi) − kill(Bi))
}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 39 / 50

Constant Folding

Decide that the value of an expression is a constant and use it instead.

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x=y=z=0

ENTRY ⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x
y
z

⏉

3

x
y
z

⏉
7

3

x
y
z

⏉
7

3

x
y
z

7

3

3

x
y
z

7

3

3

x=y=z=0
x
y
z

0

0

⏉

ENTRY
x
y
z ⏊

⏊

0

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 40 / 50

Constant Propagation Analysis

For each program point, determine whether a variable has a constant value
whenever execution reaches that point.

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x=y=z=0

ENTRY ⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x
y
z

⏉

3

x
y
z

⏉
7

3

x
y
z

⏉
7

3

x
y
z

7

3

3

x
y
z

7

3

3

x=y=z=0
x
y
z

0

0

⏉

ENTRY
x
y
z ⏊

⏊

0

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 41 / 50

How It Works (1)

⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x=y=z=0
x
y
z

0

0

ENTRY
x
y
z ⏊

⏊

0

⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x=y=z=0
x
y
z

0

0

ENTRY
x
y
z ⏊

⏊

0

x
y
z

1

0

3

x
y
z

1

7

3

x
y
z

1

7

3

x
y
z

3

7

3

x
y
z

3

7

3

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 42 / 50

How It Works (2)

⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x=y=z=0
x
y
z

0

0

ENTRY
x
y
z ⏊

⏊

0

⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x=y=z=0
x
y
z

0

0

ENTRY
x
y
z ⏊

⏊

0

x
y
z

1

0

3

x
y
z

1

7

3

x
y
z

1

7

3

x
y
z

3

7

3

x
y
z

3

7

3

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 43 / 50

How It Works (3)

⏊

z = 3

x = 1

x > 0

y = z+4y = 7

x = 3

print y

x
y
z

0

0

3

x
y
z

1

0

3

x=y=z=0
x
y
z

0

0

ENTRY
x
y
z ⏊

⏊

0

x
y
z

1

0

3

x
y
z

⏉
7

3

x
y
z

⏉
7

3

x
y
z

3

7

3

x
y
z

3

7

3

x
y
z

3

7

3
t =

x
y
z

⏉
⏉
3

⏊

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 44 / 50

Constant Analysis

The goal is to compute

in : Block → (Var → C)
out : Block → (Var → C)

where C is a partially ordered set:

… -2 -1 0 1 2 …

⏉

⏊

with the order:

∀c1, c2 ∈ C. c1 ⊑ c2 iff c1 = ⊥ ∨ c2 = ⊤ ∨ c1 = c2

Functions in Var → C are also partially ordered:

∀d1, d2 ∈ (Var → C). d1 ⊑ d2 iff ∀x ∈ Var . d1(x) ⊑ d2(x)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 45 / 50

Join (Least Upper Bound)

The join between domain elements:

c1 ⊔ c2 =


c2 c1 = ⊥
c1 c2 = ⊥
c1 c1 = c2
⊤ o.w.

The join between abstract states:

d1 ⊔ d2 = λx ∈ Var . d1(x) ⊔ d2(x)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 46 / 50

Transfer Function

The transfer function

fB : (Var → C) → (Var → C)

models the program execution in terms of the abstract values: e.g.,

Transfer function for z = 3:

λd. [z 7→ 3]d

Transfer function for x > 0:

λd. d

Transfer function for y = z + 4:

λd.


[y 7→ ⊥]d d(z) = ⊥
[y 7→ ⊤]d d(z) = ⊤
[y 7→ d(z) + 4]d o.w.

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 47 / 50

Transfer Function

A simple set of commands:

c → x := e | x > n |
e → n | x | e1 + e2 | e1 − e2

The transfer function:

fx:=e(d) = [x 7→ [[e]](d)]d
fx>n(d) = d

[[n]](d) = n
[[x]](d) = d(x)

[[e1 + e2]](d) = [[e1]](d) + [[e2]](d)
[[e1 − e2]](d) = [[e1]](d) − [[e2]](d)

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 48 / 50

Data-Flow Equations

Equation:

in(B) =
⊔

P ↪→B

out(P)

out(B) = fB(in(B))

Fixed point computation:

For all i, in(Bi) = out(Bi) = λx.⊥
while (changes to any in and out occur) {
For all i, update
in(Bi) =

⊔
P ↪→Bi

out(P)

out(Bi) = fBi(in(Bi))
}

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 49 / 50

Summary

Data-flow analyses we covered:
▶ Reaching definitions analysis
▶ Liveness analysis
▶ Available expressions analysis
▶ Constant propagation analysis

Optimization passes
▶ Common subexpression elimination
▶ Copy propagation
▶ Decode elimination
▶ Constant folding

Hakjoo Oh COSE312 2025 Spring, Lecture 16 May 27, 2025 50 / 50

