COSE312: Compilers

Lecture 1 — Overview of Compilers

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 1/12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

source program - target program
> Compiler >

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2/12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

source program] target program
> Compiler >

Typically,
@ the source language is a high-level language, e.g., C

o the target language is a machine language, e.g., x86

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2/12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

source program] target program
> Compiler >

Typically,
@ the source language is a high-level language, e.g., C
o the target language is a machine language, e.g., x86

The target language may not be a machine language:

source program target program output
— | Compiler |[———|Interpreter| ———>

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2/12

A Fundamental Requirement

@ The compiler must preserve the meaning of the source program.

source program target program
> >

> Compiler >
semantics of — semantics of
source program -_— target program

@ Correctness of real-world compilers?

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 3/12

Structure of Compilers

source

v

Front End

program

—>

Middle End

—>

Back End

target

program'

@ The front-end understands the source program and translates it to an
intermediate representation (IR).

@ The middle-end takes a program in IR and optimizes it in terms of

efficiency, energy consumption, and so on.

@ The back-end transforms the IR program into machine-code.

Hakjoo Oh COSE312 2025 Spring, Lecture 1

March 6, 2025

4/12

Front End

character

token streams

syntax tree

syntax tree

stream

Lexical

| Analyzer

Syntax
Analyzer

Semantic
Analyzer

IR
Translator

Lexical analyzer transforms character streams into token streams.

Semantic analyzer checks the correctness of input programs.

°
@ Syntax analyzer transforms token streams into syntax trees.
°
°

IR translator converts syntax trees into IRs.

Hakjoo Oh COSE312 2025 Spring, Lecture 1

March 6, 2025 5/12

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream
_—

Lexical
Analyzer

token stream
—’

Lof or relating to words or the vocabulary of a language as distinguished from its

grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1

March 6, 2025

6/12

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream
_—

Lexical
Analyzer

token stream
—’

ex) The lexical analyzer for C transforms the character stream

pos = init + rate * 10

Lof or relating to words or the vocabulary of a language as distinguished from its

grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025

6/12

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream Lexical token stream

_— —
Analyzer

ex) The lexical analyzer for C transforms the character stream
pos = init + rate * 10
into the following sequence:

pos”, “2init 4" “rate”, “*”. “10”

Lof or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6/12

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream Lexical token stream
—_— ———
Analyzer

ex) The lexical analyzer for C transforms the character stream
pos = init + rate * 10
into the following sequence:
pos”, “=", "init", "+", “rate”, “x", “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

Lof or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6/12

Syntax? Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

token stream
S ——

syntax tree

Syntax
—

Analyzer

2the way in which words are put together to form phrases, clauses, or sentences

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 7/12

Syntax® Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

token stream
—_—

syntax tree

Syntax
———>

Analyzer

ex) A C parser transforms the sequence of tokens
(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)
into the syntax tree:
(ID,pos) /+\
(ID,init) /*

N

(ID,rate) (NUM,10)

2the way in which words are put together to form phrases, clauses, or sentences

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 7/12

Semantic Analyzer

A semantic analyzer aims to establish the correctness of the input program:

syntax tree Semantic syntax tree
_— —»
Analyzer

o Safety errors
> type errors, e.g.,
int x = 1;
string y = "hello";
int z = x + y;
» memory errors (array out of bounds, null-dereference, etc)
@ Functional errors
» pre/post conditions

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 8/12

IR Translator

syntax tree
S ———

Intermediate Representation:

IR
Translator

@ lower-level than the source language

@ higher-level than the target language

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025

9/12

IR Translator

syntax tree IR IR

_— —
Translator

Intermediate Representation:
@ lower-level than the source language
@ higher-level than the target language
ex) Three-address code:

tl = 10
t2 = rate * til
t3 = init + t2
pos = t3

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 9/12

Optimizer

Transforms IR to have better performance:

v

Optimizer! [

IR —»]

Optimizer n

Hakjoo Oh COSE312 2025 Spring, Lecture 1

March 6, 2025

10/12

Optimizer

Transforms IR to have better performance:

v

Optimizer1 [IR

IR —»| Optimizern

t1
t2 = rate * t1
t3 init + t2
pos = t3

10

t1 =10
t2 = rate * 10
t3 = init + t2
pos = t3

t2 = rate * 10
t3 = init + t2
pos = t3

t2 = rate * 10
pos = init + t2

original IR

Hakjoo Oh COSE312 2025 Spring, Lecture 1

final IR

March 6, 2025

10/12

Back End

Generates the target machine code:

IR
B ——

Back End

target program
—

ex) From the IR

t2 = rate * 10
pos = init + t2

generates the machine code

LOAD R2, rate
MUL R2, R2, #10
LOAD R1, init
ADD R1, R1, R2
STORE pos, R1

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025

11/12

Summary

Compilers consist of three phases:

source
Front End

v

program

—»

Middle End

>

Back End

target

program'

@ Front end understands the syntax and semantics of source program.

o Middle end improves the efficiency of the program.

@ Back end generates the target program.

Hakjoo Oh COSE312 2025 Spring, Lecture 1

March 6, 2025 12/12

