
COSE312: Compilers

Lecture 1 — Overview of Compilers

Hakjoo Oh
2025 Spring

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 1 / 12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Typically,

the source language is a high-level language, e.g., C

the target language is a machine language, e.g., x86

The target language may not be a machine language:

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2 / 12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Typically,

the source language is a high-level language, e.g., C

the target language is a machine language, e.g., x86

The target language may not be a machine language:

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2 / 12

What is Compiler?

Software that translates a program written in one language (“source
language”) into a program in another language (“target language”):

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Typically,

the source language is a high-level language, e.g., C

the target language is a machine language, e.g., x86

The target language may not be a machine language:

Compiler
source program target program

Compiler
source program target program

Interpreter
output

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 2 / 12

A Fundamental Requirement

The compiler must preserve the meaning of the source program.

semantics of
source program

semantics of
target program

Compiler
source program target program

Correctness of real-world compilers?

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 3 / 12

Structure of Compilers

Front End Middle End Back End
source target IR IR

program program

The front-end understands the source program and translates it to an
intermediate representation (IR).

The middle-end takes a program in IR and optimizes it in terms of
efficiency, energy consumption, and so on.

The back-end transforms the IR program into machine-code.

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 4 / 12

Front End

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

Lexical analyzer transforms character streams into token streams.

Syntax analyzer transforms token streams into syntax trees.

Semantic analyzer checks the correctness of input programs.

IR translator converts syntax trees into IRs.

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 5 / 12

Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) The lexical analyzer for C transforms the character stream

pos = init + rate * 10

into the following sequence:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6 / 12

Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) The lexical analyzer for C transforms the character stream

pos = init + rate * 10

into the following sequence:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6 / 12

Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) The lexical analyzer for C transforms the character stream

pos = init + rate * 10

into the following sequence:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6 / 12

Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) The lexical analyzer for C transforms the character stream

pos = init + rate * 10

into the following sequence:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 6 / 12

Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) A C parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

=

(ID,pos)

(ID,init)

+

*

(ID,rate) (NUM,10)

2the way in which words are put together to form phrases, clauses, or sentences
Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 7 / 12

Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree
ex) A C parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

=

(ID,pos)

(ID,init)

+

*

(ID,rate) (NUM,10)
2the way in which words are put together to form phrases, clauses, or sentences

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 7 / 12

Semantic Analyzer

A semantic analyzer aims to establish the correctness of the input program:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

Safety errors
▶ type errors, e.g.,

int x = 1;

string y = "hello";

int z = x + y;

▶ memory errors (array out of bounds, null-dereference, etc)

Functional errors
▶ pre/post conditions

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 8 / 12

IR Translator

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) Three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 9 / 12

IR Translator

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) Three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 9 / 12

Optimizer

Transforms IR to have better performance:

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

E.g.,
4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

original IR final IR

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 10 / 12

Optimizer

Transforms IR to have better performance:

IR
Translator

Lexical
Analyzer

Syntax
Analyzer

Semantic
Analyzer

character IR
token streams

stream

syntax tree

Optimizer1 Optimizer n
IR IR

IR … IR

syntax tree

E.g.,
4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

4

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

is optimized as follows:

– Some optimization pass, say optimization pass 1, finds that t1 is constant during all the
possible program execution and replace t1 by 10:

t1 = 10

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t1 is defined but never used. So, it removes the first
statement:

t2 = rate * 10

t3 = init + t2

pos = t3

– The next optimization pass finds that t3 is defined and immediately used and no more used
afterwards. So, it removes t3 and combines the last two statements:

t2 = rate * 10

pos = init + t2

1.5 Back End

The back end of a compiler takes as input an IR of the source program and generates the target
code. For instance, from the IR program

t2 = rate * 10

pos = init + t2

compiler generates the following machine code:

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

A key challenge in code generation is register allocation and assignments: determine how many
registers to use and what values to hold in what registers. In this course, we are going to discuss
register allocation algorithms if time permits.

original IR final IR

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 10 / 12

Back End

Generates the target machine code:

Lexical
Analyzer

token streamcharacter stream

Syntax
Analyzer

syntax treetoken stream

IR
Translator

IRsyntax tree

Back End
target programIR

Semantic
Analyzer

syntax tree syntax tree

ex) From the IR

t2 = rate * 10

pos = init + t2

generates the machine code

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 11 / 12

Summary

Compilers consist of three phases:

Front End Middle End Back End
source target IR IR

program program

Front end understands the syntax and semantics of source program.

Middle end improves the efficiency of the program.

Back end generates the target program.

Hakjoo Oh COSE312 2025 Spring, Lecture 1 March 6, 2025 12 / 12

