COSE312: Compilers Lecture 6 — Syntax Analysis (1)

Hakjoo Oh 2015 Fall

Syntax Analysis (Parsing)

Determine whether or not the input program is syntactically valid. If so, transform the stream

into the syntax tree (or parse tree):

Contents

- Specification: context-free grammars.
- Algorithms: top-down and bottom-up parsing algorithms
- Tools: automatic parser generator

Example: Palindrome

• A string is a palindrome if it reads the same forward and backward.

Example: Palindrome

• A string is a palindrome if it reads the same forward and backward.

•
$$L = \{w \in \{0,1\}^* \mid w = w^R\}$$

Example: Palindrome

• A string is a palindrome if it reads the same forward and backward.

•
$$L = \{w \in \{0,1\}^* \mid w = w^R\}$$

• L is not regular, but context-free.

Example: Palindrome

• A string is a palindrome if it reads the same forward and backward.

•
$$L = \{w \in \{0,1\}^* \mid w = w^R\}$$

- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
 - Basis: ϵ , 0, and 1 are palindromes.
 - Induction: If w is a palindrome, so are 0w0 and 1w1.

Example: Palindrome

• A string is a palindrome if it reads the same forward and backward.

•
$$L = \{w \in \{0,1\}^* \mid w = w^R\}$$

- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
 - Basis: ϵ , 0, and 1 are palindromes.
 - Induction: If w is a palindrome, so are 0w0 and 1w1.
- The recursive definition is expressed by a context-free grammar.

\boldsymbol{P}	\rightarrow	ϵ
\boldsymbol{P}	\rightarrow	0
\boldsymbol{P}	\rightarrow	1
\boldsymbol{P}	\rightarrow	0P0
\boldsymbol{P}	\rightarrow	1P

Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

G = (V, T, S, P)

- V: a finite set of variables (nonterminals)
- T: a finite set of terminal symbols (tokens)
- $S \in V$: the start variable
- P: a finite set of productions. A production has the form

where $x \in V$ and $y \in (V \cup T)^*$.

Example: Expressions

$$G = (\{E\}, \{(,), \mathrm{id}\}, E, P)$$

where P:

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

Example: Expressions

$$G = (\{E\}, \{(,), \mathrm{id}\}, E, P)$$

where P:

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

The language includes id * (id + id) because it is "derived" from E as follows:

$$E \Rightarrow E * E \Rightarrow \mathrm{id} * E \Rightarrow \mathrm{id} * (E) \Rightarrow \mathrm{id} * (E + E)$$

$$\Rightarrow \mathrm{id} * (\mathrm{id} + E) \Rightarrow \mathrm{id} * (\mathrm{id} + \mathrm{id})$$

Derivation

Definition (Derivation Relation, \Rightarrow)

Let G = (V, T, S, P) be a context-free grammar. Let $\alpha A\beta$ be a string of terminals and variables, where $A \in V$ and $\alpha, \beta \in (V \cup T)^*$. Let $A \to \gamma$ is a production in G. Then, we say $\alpha A\beta$ derives $\alpha \gamma \beta$, and write

 $\alpha A\beta \Rightarrow \alpha \gamma \beta.$

Definition (\Rightarrow^* , Closure of \Rightarrow)

 \Rightarrow^* is a relation that represents zero, or more steps of derivations:

- Basis: For any string α of terminals and variables, $\alpha \Rightarrow^* \alpha$.
- Induction: If $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^* \gamma$.

Language of Grammar

Definition (Sentential Forms)

If G = (V, T, S, P) is a context-free grammar, then any string $\alpha \in (V \cup T)^*$ such that $S \Rightarrow^* \alpha$ is a sentential form.

Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

$$L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}.$$

Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a sentence -(id + id) can be derived by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

or alternatively by

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+\mathrm{id}) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

Leftmost and Rightmost Derivations

 Leftmost derivation: the leftmost non-terminal in each sentential is always chosen. If α ⇒ β is a step in which the leftmost non-terminal in α is replaced, we write α ⇒_l β.

$$E \Rightarrow_l - E \Rightarrow_l - (E) \Rightarrow_l - (E + E) \Rightarrow_l - (\mathrm{id} + E) \Rightarrow_l - (\mathrm{id} + \mathrm{id})$$

 Rightmost derivation (canonical derivation): the rightmost non-terminal in each sentential is always chosen. If α ⇒ β is a step in which the rightmost non-terminal in α is replaced, we write α ⇒_r β.

$$E \Rightarrow_r - E \Rightarrow_r -(E) \Rightarrow_r -(E+E) \Rightarrow_r -(E+\mathrm{id}) \Rightarrow_r -(\mathrm{id}+\mathrm{id})$$

- If $S \Rightarrow_l^* \alpha$, α is a left sentential form.
- If $S \Rightarrow_r^* \alpha$, α is a right sentential form.

Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

is represented by the parse tree:

- Each interior node represents the application of a production.
- The interior node is labeled by the head of the production.
- Children are labeled by the symbols in the body of the production.

Parse Tree

A parse tree ignores variations in the order in which symbols are replaced. Two derivations

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(\mathrm{id}+E) \Rightarrow -(\mathrm{id}+\mathrm{id})$$

 $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+\mathrm{id}) \Rightarrow -(\mathrm{id}+\mathrm{id})$

produce the same parse tree:

The parse trees for two derivations are identical if the derivations use the same set of rules (they apply those rules only in a different order).

Ambiguity

A grammar is ambiguous if

- it produces more than one parse tree for some sentence,
- it has multiple leftmost derivations, or
- it has multiple rightmost derivations.

Example

The grammar

$$E \rightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

is ambiguous, because it permits two different leftmost derivations for id + id * id:

 $\textcircled{0} E \Rightarrow E + E \Rightarrow \mathrm{id} + E \Rightarrow \mathrm{id} + E * E \Rightarrow \mathrm{id} + \mathrm{id} * E \Rightarrow \mathrm{id} + \mathrm{id} * \mathrm{id}$

Example

The grammar

$$E
ightarrow E + E \mid E * E \mid -E \mid (E) \mid \mathrm{id}$$

is ambiguous, because it permits two different leftmost derivations for id + id * id:

 $E \Rightarrow E + E \Rightarrow id + E \Rightarrow id + E * E \Rightarrow id + id * E \Rightarrow id + id * id$

Writing a Grammar

Transformations to make a grammar more suitable for parsing:

- eliminating ambiguity
- eliminating left-recursion
- left factoring

Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an ambiguous grammar:

 $E \to E + E \mid E \ast E \mid (E) \mid \mathrm{id}$

To eliminate the ambiguity, we express in grammar

- (precedence) bind * tighter than +
 - 1+2*3 is always parsed by 1+(2*3)
- (associativity) * and + associate to the left
 - 1+2+3 is always parsed by (1+2)+3

Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an ambiguous grammar:

 $E \rightarrow E + E \mid E * E \mid (E) \mid \mathrm{id}$

To eliminate the ambiguity, we express in grammar

(precedence) bind * tighter than +
1+2*3 is always parsed by 1 + (2*3)
(associativity) * and + associate to the left
1+2+3 is always parsed by (1+2)+3
An unambiguous grammar:

 $\begin{array}{l} E \rightarrow E + T \mid T \\ T \rightarrow T * F \mid F \\ F \rightarrow \mathrm{id} \mid (E) \end{array}$

- parse tree for 1+2+3
- parse tree for 1+2*3

Exercise

Transform the grammar

$$egin{array}{cccc} E
ightarrow E + T \mid T \ T
ightarrow T * F \mid F \ F
ightarrow {
m id} \mid (E) \end{array}$$

so that * associate to the right.

Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in an A-production, e.g.,

$$E \to E + T \mid T$$

Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A appears as the first right-hand-side symbol in an A-production, e.g.,

$$E \to E + T \mid T$$

To eliminate left-recursion, rewrite the grammar using right recursion:

$$E \rightarrow T E' \\ E' \rightarrow + T E' \\ E' \rightarrow \epsilon$$

Left Factoring

The grammar

 $S \to \text{if } E \text{ then } S \text{ else } S$ $S \to \text{if } E \text{ then } S$

has rules with the same prefix. We can *left factor* the grammar as follows:

 $S \rightarrow \text{if } E \text{ then } S X$ $X \rightarrow \epsilon$ $X \rightarrow \text{else } S$

Summary

- The syntax of a programming language is usually specified by context-free grammars.
- Basic definitions and terminologies: context-free grammar, derivation, left/rightmost derivations, parse tree, ambiguous/unambiguous grammar, grammar transformation (eliminating ambiguity, eliminating left-recursion, left factoring)