
COSE312: Compilers

Lecture 5 — Lexical Analysis (4)
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Part 3: Automation

Transform the lexical specification into an executable string recognizers:
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From NFA to DFA

Transform an NFA
(N,Σ, δN , n0, NA)

into an equivalent DFA

(D,Σ, δD, d0, DA).

Running example:
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ε-Closures

ε-closure(I): the set of states reachable from I without consuming any
symbols.

0start 1 2 3
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8 9
a ε ε

ε

ε
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ε

ε

ε
ε

ε

ε-closure({1}) = {1, 2, 3, 4, 6, 9}
ε-closure({1, 5}) = {1, 2, 3, 4, 6, 9} ∪ {3, 4, 5, 6, 8, 9}
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Subset Construction

Input: an NFA (N,Σ, δN , n0, NA).

Output: a DFA (D,Σ, δD, d0, DA).

Key Idea: the DFA simulates the NFA by considering every possibility
at once. A DFA state d ∈ D is a set of NFA state, i.e., d ⊆ N .
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Running Example (1/5)

The initial DFA state d0 = ε-closure({0}) = {0}.

{0}start
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Running Example (2/5)

For the initial state S, consider every x ∈ Σ and compute the
corresponding next states:

ε-closure(
⋃
s∈S

δ(s, a)).

ε-closure(
⋃

s∈{0} δ(s, a)) = {1, 2, 3, 4, 6, 9}
ε-closure(

⋃
s∈{0} δ(s, b)) = ∅

ε-closure(
⋃

s∈{0} δ(s, c)) = ∅

{0}start
{1, 2, 3,
4, 6, 9}

a
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Running Example (3/5)

For the state {1, 2, 3, 4, 6, 9}, compute the next states:

ε-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, a)) = ∅
ε-closure(

⋃
s∈{1,2,3,4,6,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}

ε-closure(
⋃

s∈{1,2,3,4,6,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c
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Running Example (4/5)

Compute the next states of {3, 4, 5, 6, 8, 9}:
ε-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, a)) = ∅

ε-closure(
⋃

s∈{3,4,5,6,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ε-closure(

⋃
s∈{3,4,5,6,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b
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Running Example (5/5)

Compute the next states of {3, 4, 6, 7, 8, 9}:
ε-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, a)) = ∅

ε-closure(
⋃

s∈{3,4,6,7,8,9} δ(s, b)) = {3, 4, 5, 6, 8, 9}
ε-closure(

⋃
s∈{3,4,6,7,8,9} δ(s, c)) = {3, 4, 6, 7, 8, 9}

{0}start
{1, 2, 3,
4, 6, 9}

{3, 4, 5,
6, 8, 9}

{3, 4, 6,
7, 8, 9}

a

b

c

c

b

b

c
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Subset Construction Algorithm
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Running Example (1/5)

0start 1 2 3

4 5

6 7

8 9
a ε ε

ε

ε
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ε

ε

ε
ε

ε

The initial state d0 = ε-closure({0}) = {0}. Initialize D and W :

D = {{0}}, W = {{0}}
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Running Example (2/5)

Choose q = {0} from W . For all c ∈ Σ, update δD:

a b c

{0} {1, 2, 3, 4, 6, 9} ∅ ∅

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}}, W = {{1, 2, 3, 4, 6, 9}}
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Running Example (3/5)

Choose q = {1, 2, 3, 4, 6, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

Update D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
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Running Example (4/5)

Choose q = {3, 4, 5, 6, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = {{3, 4, 6, 7, 8, 9}}
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Running Example (5/5)

Choose q = {3, 4, 6, 7, 8, 9} from W . For all c ∈ Σ, update δD:

a b c
{0} {1, 2, 3, 4, 6, 9} ∅ ∅

{1, 2, 3, 4, 6, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 5, 6, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}
{3, 4, 6, 7, 8, 9} ∅ {3, 4, 5, 6, 8, 9} {3, 4, 6, 7, 8, 9}

D and W :

D = {{0}, {1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
W = ∅

The while loop terminates. The accepting states:

DA = {{1, 2, 3, 4, 6, 9}, {3, 4, 5, 6, 8, 9}, {3, 4, 6, 7, 8, 9}}
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Algorithm for computing ε-Closures

The definition

ε-closure(I) is the set of states reachable from I
without consuming any symbols.

is neither formal nor constructive.

A formal definition:
T = ε-closure(I) is the smallest set such that

I ∪
⋃
s∈T

δ(s, ε) ⊆ T.

Alternatively, T is the smallest solution of the equation

F (X) ⊆ (X)

where
F (X) = I ∪

⋃
s∈X

δ(s, ε).

Such a solution is called the least fixed point of F .
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Fixed Point Iteration

The least fixed point of a function can be computed by the fixed point
iteration:

T = ∅
repeat
T ′ = T
T = T ′ ∪ F (T ′)

until T = T ′
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Example

0start 1 2 3

4 5

6 7

8 9
a ε ε

ε

ε

b

c

ε

ε

ε
ε

ε

ε-closure({1}):

Iteration T ′ T

1 ∅ {1}
2 {1} {1, 2}
3 {1, 2} {1, 2, 3, 9}
4 {1, 2, 3, 9} {1, 2, 3, 4, 6, 9}
5 {1, 2, 3, 4, 6, 9} {1, 2, 3, 4, 6, 9}
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Summary

Key concepts in lexical analsis:

Specification: Regular expressions

Implementation: Deterministic Finite Automata

Translation (homework 1)

Next class: OCaml programming tutorial by TAs.
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