COSE312: Compilers Lecture 5 — Lexical Analysis (4)

Hakjoo Oh 2017 Spring

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

From NFA to DFA

Transform an NFA

$$(N, \Sigma, \delta_N, n_0, N_A)$$

into an equivalent DFA

 $(D, \Sigma, \delta_D, d_0, D_A).$

From NFA to DFA

Transform an NFA

$$(N,\Sigma,\delta_N,n_0,N_A)$$

into an equivalent DFA

$$(D, \Sigma, \delta_D, d_0, D_A).$$

Running example:

ϵ -Closures

 ϵ -closure(I): the set of states reachable from I without consuming any symbols.

$$\begin{array}{lll} \epsilon\text{-closure}(\{1\}) &=& \{1,2,3,4,6,9\} \\ \epsilon\text{-closure}(\{1,5\}) &=& \{1,2,3,4,6,9\} \cup \{3,4,5,6,8,9\} \end{array}$$

Subset Construction

- Input: an NFA $(N, \Sigma, \delta_N, n_0, N_A)$.
- Output: a DFA $(D, \Sigma, \delta_D, d_0, D_A)$.
- Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $d \in D$ is a set of NFA state, i.e., $d \subseteq N$.

Running Example (1/5)

The initial DFA state $d_0 = \epsilon$ -closure $(\{0\}) = \{0\}$.

$$\mathsf{start} \longrightarrow \fbox{0}$$

Running Example (2/5)

For the initial state S, consider every $x \in \Sigma$ and compute the corresponding next states:

$$\epsilon ext{-closure}(igcup_{s\in S}\delta(s,a)).$$

Running Example (2/5)

For the initial state S, consider every $x \in \Sigma$ and compute the corresponding next states:

$$\begin{split} \epsilon\text{-closure}(\bigcup_{s\in S}\delta(s,a)).\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,a)) &= \{1,2,3,4,6,9\}\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,b)) &= \emptyset\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,c)) &= \emptyset\\ \text{start} \longrightarrow \underbrace{\{0\}}^{a} \underbrace{\{1,2,3,4,6,9\}}_{\{4,6,9\}} \end{split}$$

Running Example (3/5)

For the state $\{1, 2, 3, 4, 6, 9\}$, compute the next states:

Hakjoo Oh

Running Example (4/5)

Compute the next states of $\{3, 4, 5, 6, 8, 9\}$:

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,a)) = \emptyset$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\}$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\}$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$c$$

$$\{3,4,6,7,8,9\}$$

Running Example (5/5)

Compute the next states of $\{3, 4, 6, 7, 8, 9\}$:

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,a)) = \emptyset$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\}$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\}$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$c$$

$$\{3,4,6,7,8,9\}$$

$$c$$

$$\{3,4,6,7,8,9\}$$

$$c$$

Subset Construction Algorithm

Algorithm 1 Subset construction **Input**: An NFA $(N, \Sigma, \delta_N, n_0, N_A)$ **Output**: An equivalent DFA $(D, \Sigma, \delta_D, d_0, D_A)$ $d_0 = \epsilon \text{-closure}(\{n_0\})$ $D = \{d_0\}$ $W = \{d_0\}$ while $W \neq \emptyset$ do remove q from Wfor $c \in \Sigma$ do $t = \epsilon$ -closure($\bigcup_{s \in a} \delta(s, c)$) $D = D \cup \{t\}$ $\delta_D(q,c) = t$ if t was newly added to D then $W = W \cup \{t\}$ end if end for end while $D_A = \{ q \in D \mid q \cap N_A \neq \emptyset \}$

Running Example (1/5)

The initial state $d_0 = \epsilon$ -closure($\{0\}$) = $\{0\}$. Initialize D and W:

$$D = \{\{0\}\}, \qquad W = \{\{0\}\}$$

Running Example (2/5)

Choose $q = \{0\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	с
{0}	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}\}, \qquad W = \{\{1, 2, 3, 4, 6, 9\}\}$

Running Example (3/5)

Choose $q = \{1, 2, 3, 4, 6, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	С
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$ $W = \{\{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

Running Example (4/5)

Choose $q = \{3, 4, 5, 6, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	С
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$
$$W = \{\{3, 4, 6, 7, 8, 9\}\}$$

Running Example (5/5)

Choose $q = \{3, 4, 6, 7, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	С
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

$$W = \emptyset$$

The while loop terminates. The accepting states:

 $D_A = \{\{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

Algorithm for computing ϵ -Closures

• The definition

 ϵ -closure(I) is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

Algorithm for computing ϵ -Closures

• The definition

 ϵ -closure(I) is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

• A formal definition:

 $T = \epsilon$ -closure(I) is the smallest set such that

$$I\cup igcup_{s\in T}\delta(s,\epsilon)\subseteq T.$$

Algorithm for computing ϵ -Closures

• The definition

 ϵ -closure(I) is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

• A formal definition:

 $T = \epsilon$ -closure(I) is the smallest set such that

$$I\cup igcup_{s\in T}\delta(s,\epsilon)\subseteq T.$$

ullet Alternatively, T is the smallest solution of the equation

 $F(X) \subseteq (X)$

where

$$F(X) = I \cup \bigcup_{s \in X} \delta(s, \epsilon).$$

Such a solution is called the least fixed point of F.

Hakjoo Oh

Fixed Point Iteration

The least fixed point of a function can be computed by the *fixed point iteration*:

$$T = \emptyset$$

repeat
 $T' = T$
 $T = T' \cup F(T')$
until $T = T'$

Example

ϵ -closure({1}):

Iteration	T'	T
1	Ø	{1}
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1, 2, 3, 9\}$
4	$\{1, 2, 3, 9\}$	$\{1, 2, 3, 4, 6, 9\}$
5	$\{1, 2, 3, 4, 6, 9\}$	$\{1, 2, 3, 4, 6, 9\}$

Summary

Key concepts in lexical analsis:

- Specification: Regular expressions
- Implementation: Deterministic Finite Automata
- Translation (homework 1)

Next class: OCaml programming tutorial by TAs.