## COSE312: Compilers

## Lecture 5 - Lexical Analysis (4)

Hakjoo Oh<br>2017 Spring

## Part 3: Automation

Transform the lexical specification into an executable string recognizers:


## From NFA to DFA

Transform an NFA

$$
\left(N, \Sigma, \delta_{N}, n_{0}, N_{A}\right)
$$

into an equivalent DFA
$\left(D, \Sigma, \delta_{D}, d_{0}, D_{A}\right)$.

## From NFA to DFA

Transform an NFA

$$
\left(N, \Sigma, \delta_{N}, n_{0}, N_{A}\right)
$$

into an equivalent DFA
$\left(D, \Sigma, \delta_{D}, d_{0}, D_{A}\right)$.
Running example:


## $\epsilon$-Closures

$\boldsymbol{\epsilon}$-closure( $\boldsymbol{I})$ : the set of states reachable from $\boldsymbol{I}$ without consuming any symbols.

$\epsilon$-closure $(\{1\})=\{1,2,3,4,6,9\}$
$\epsilon$-closure $(\{1,5\})=\{1,2,3,4,6,9\} \cup\{3,4,5,6,8,9\}$

## Subset Construction

- Input: an NFA $\left(\boldsymbol{N}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\boldsymbol{N}}, \boldsymbol{n}_{\mathbf{0}}, \boldsymbol{N}_{\boldsymbol{A}}\right)$.
- Output: a DFA $\left(\boldsymbol{D}, \boldsymbol{\Sigma}, \delta_{D}, d_{0}, D_{A}\right)$.
- Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $\boldsymbol{d} \in \boldsymbol{D}$ is a set of NFA state, i.e., $\boldsymbol{d} \subseteq \boldsymbol{N}$.


## Running Example $(1 / 5)$

The initial DFA state $d_{0}=\epsilon$-closure $(\{0\})=\{0\}$.


## Running Example $(2 / 5)$

For the initial state $\boldsymbol{S}$, consider every $\boldsymbol{x} \in \boldsymbol{\Sigma}$ and compute the corresponding next states:

$$
\epsilon \text {-closure }\left(\bigcup_{s \in S} \delta(s, a)\right)
$$

## Running Example $(2 / 5)$

For the initial state $\boldsymbol{S}$, consider every $\boldsymbol{x} \in \boldsymbol{\Sigma}$ and compute the corresponding next states:

$$
\epsilon \text {-closure }\left(\bigcup_{s \in S} \delta(s, a)\right)
$$

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, a)\right)=\{1,2,3,4,6,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, b)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, c)\right)=\emptyset
\end{aligned}
$$



## Running Example $(3 / 5)$

For the state $\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{9}\}$, compute the next states:

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$



## Running Example $(4 / 5)$

Compute the next states of $\{\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{8}, \mathbf{9}\}$ :

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$



## Running Example $(5 / 5)$

Compute the next states of $\{\mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7}, 8,9\}$ :

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$



## Subset Construction Algorithm

```
Algorithm 1 Subset construction
    Input: An NFA \(\left(N, \Sigma, \delta_{N}, n_{0}, N_{A}\right)\)
    Output: An equivalent DFA \(\left(D, \Sigma, \delta_{D}, d_{0}, D_{A}\right)\)
    \(d_{0}=\epsilon\)-closure \(\left(\left\{n_{0}\right\}\right)\)
    \(D=\left\{d_{0}\right\}\)
    \(W=\left\{d_{0}\right\}\)
    while \(W \neq \emptyset\) do
        remove \(q\) from \(W\)
        for \(c \in \Sigma\) do
            \(t=\epsilon\)-closure \(\left(\bigcup_{s \in q} \delta(s, c)\right)\)
            \(D=D \cup\{t\}\)
            \(\delta_{D}(q, c)=t\)
            if \(t\) was newly added to \(D\) then
                \(W=W \cup\{t\}\)
            end if
        end for
    end while
    \(D_{A}=\left\{q \in D \mid q \cap N_{A} \neq \emptyset\right\}\)
```


## Running Example $(1 / 5)$



The initial state $\boldsymbol{d}_{\mathbf{0}}=\epsilon$-closure $(\{0\})=\{0\}$. Initialize $\boldsymbol{D}$ and $\boldsymbol{W}$ :

$$
D=\{\{0\}\}, \quad W=\{\{0\}\}
$$

Running Example $(2 / 5)$
Choose $\boldsymbol{q}=\{0\}$ from $\boldsymbol{W}$. For all $\boldsymbol{c} \in \boldsymbol{\Sigma}$, update $\boldsymbol{\delta}_{\boldsymbol{D}}$ :

|  | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\{0\}$ | $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\emptyset$ |

Update $\boldsymbol{D}$ and $\boldsymbol{W}$ :

$$
D=\{\{0\},\{1,2,3,4,6,9\}\}, \quad W=\{\{1,2,3,4,6,9\}\}
$$

## Running Example $(3 / 5)$

Choose $q=\{1,2,3,4,6,9\}$ from $W$. For all $c \in \Sigma$, update $\delta_{D}$ :

|  | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\{0\}$ | $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\emptyset$ |
| $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |

Update $\boldsymbol{D}$ and $\boldsymbol{W}$ :
$D=\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$
$W=\{\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$

## Running Example $(4 / 5)$

Choose $q=\{3,4,5,6,8,9\}$ from $W$. For all $c \in \Sigma$, update $\delta_{D}$ :

|  | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\{0\}$ | $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\emptyset$ |
| $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |
| $\{3,4,5,6,8,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |

$\boldsymbol{D}$ and $\boldsymbol{W}$ :
$D=\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$
$W=\{\{3,4,6,7,8,9\}\}$

## Running Example $(5 / 5)$

Choose $\boldsymbol{q}=\{\mathbf{3}, 4, \mathbf{6}, \mathbf{7}, 8,9\}$ from $\boldsymbol{W}$. For all $\boldsymbol{c} \in \boldsymbol{\Sigma}$, update $\delta_{D}$ :

|  | $a$ | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\{0\}$ | $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\emptyset$ |
| $\{1,2,3,4,6,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |
| $\{3,4,5,6,8,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |
| $\{3,4,6,7,8,9\}$ | $\emptyset$ | $\{3,4,5,6,8,9\}$ | $\{3,4,6,7,8,9\}$ |

$\boldsymbol{D}$ and $\boldsymbol{W}$ :

$$
\begin{aligned}
D & =\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\} \\
W & =\emptyset
\end{aligned}
$$

The while loop terminates. The accepting states:

$$
D_{A}=\{\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}
$$

## Algorithm for computing $\epsilon$-Closures

- The definition
$\boldsymbol{\epsilon}$-closure( $\boldsymbol{I})$ is the set of states reachable from $\boldsymbol{I}$ without consuming any symbols.
is neither formal nor constructive.


## Algorithm for computing $\epsilon$-Closures

- The definition
$\boldsymbol{\epsilon}$-closure $(\boldsymbol{I})$ is the set of states reachable from $\boldsymbol{I}$ without consuming any symbols.
is neither formal nor constructive.
- A formal definition: $\boldsymbol{T}=\boldsymbol{\epsilon}$-closure $(\boldsymbol{I})$ is the smallest set such that

$$
I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T
$$

## Algorithm for computing $\epsilon$-Closures

- The definition
$\boldsymbol{\epsilon}$-closure( $\boldsymbol{I})$ is the set of states reachable from $\boldsymbol{I}$ without consuming any symbols.
is neither formal nor constructive.
- A formal definition:
$T=\epsilon$ - $\operatorname{closure}(\boldsymbol{I})$ is the smallest set such that

$$
I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T
$$

- Alternatively, $\boldsymbol{T}$ is the smallest solution of the equation

$$
F(X) \subseteq(X)
$$

where

$$
F(X)=I \cup \bigcup_{s \in X} \delta(s, \epsilon)
$$

Such a solution is called the least fixed point of $\boldsymbol{F}$.

## Fixed Point Iteration

The least fixed point of a function can be computed by the fixed point iteration:

$$
\begin{aligned}
& T=\emptyset \\
& \text { repeat } \\
& \quad T^{\prime}=T \\
& T=T^{\prime} \cup F\left(T^{\prime}\right) \\
& \text { until } T=T^{\prime}
\end{aligned}
$$

## Example


$\epsilon$-closure $(\{1\})$ :

| Iteration | $T^{\prime}$ | $T$ |
| :---: | :---: | :---: |
| 1 | $\emptyset$ | $\{1\}$ |
| 2 | $\{1\}$ | $\{1,2\}$ |
| 3 | $\{1,2\}$ | $\{1,2,3,9\}$ |
| 4 | $\{1,2,3,9\}$ | $\{1,2,3,4,6,9\}$ |
| 5 | $\{1,2,3,4,6,9\}$ | $\{1,2,3,4,6,9\}$ |

## Summary

Key concepts in lexical analsis:

- Specification: Regular expressions
- Implementation: Deterministic Finite Automata
- Translation (homework 1)

Next class: OCaml programming tutorial by TAs.

