COSE312: Compilers

Lecture 3 — Lexical Analysis (2)

Hakjoo Oh 2017 Spring

Specification, Recognition, and Automation

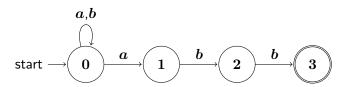
- Specification: how to specify lexical patterns?
 - ▶ In C, identifiers are strings like x, xy, match0, and _abc.
 - ▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.
 - ⇒ regular expressions
- Q Recognition: how to recognize the lexical patterns?
 - Recognize match0 as an identifier.
 - ▶ Recognize 512 as a number.
 - ⇒ deterministic finite automata.
- Automation: how to automatically generate string recognizers from specifications?
 - ⇒ Thompson's construction and subset construction

Part 2: String Recognition by Finite Automata

- Non-deterministic finite automata
- Deterministic finite automata

String Recognizer in NFA

An NFA that recognizes strings $(a|b)^*abb$:



Non-deterministic Finite Automata

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- Σ : a finite set of *input symbols* (or input alphabet). We assume that $\epsilon \not\in \Sigma$.
- $q_0 \in Q$: the initial state
- ullet $F\subseteq Q$: a set of final states (or accepting states)
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$: transition function

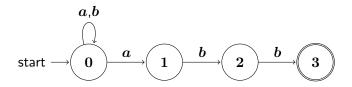
Definition of an NFA:

$$\begin{aligned} &(\{0,1,2,3\},\{a,b\},\delta,0,\{3\}) \\ &\delta(0,a) = \{0,1\} & \delta(0,b) = \{0\} \\ &\delta(1,a) = \emptyset & \delta(1,b) = \{2\} \\ &\delta(2,a) = \emptyset & \delta(2,b) = \{3\} \\ &\delta(3,a) = \emptyset & \delta(3,b) = \emptyset \end{aligned}$$

Definition of an NFA:

$$\begin{split} &(\{0,1,2,3\},\{a,b\},\delta,0,\{3\}) \\ &\delta(0,a) = \{0,1\} & \delta(0,b) = \{0\} \\ &\delta(1,a) = \emptyset & \delta(1,b) = \{2\} \\ &\delta(2,a) = \emptyset & \delta(2,b) = \{3\} \\ &\delta(3,a) = \emptyset & \delta(3,b) = \emptyset \end{split}$$

The transition graph:

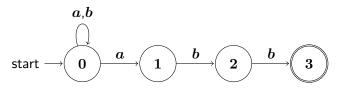


The transition table:

State	a	\boldsymbol{b}	ϵ
0	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

ullet An NFA recognizes a string $oldsymbol{w}$ if there is a path in the transition graph labeled by $oldsymbol{w}$.

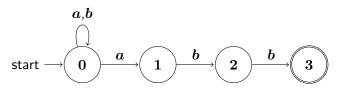
ullet An NFA recognizes a string $oldsymbol{w}$ if there is a path in the transition graph labeled by $oldsymbol{w}$.



String aabb is accepted because

$$0\stackrel{a}{\rightarrow}0\stackrel{a}{\rightarrow}1\stackrel{b}{\rightarrow}2\stackrel{b}{\rightarrow}3$$

ullet An NFA recognizes a string $oldsymbol{w}$ if there is a path in the transition graph labeled by $oldsymbol{w}$.



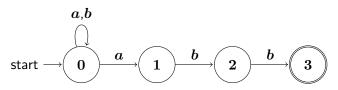
String aabb is accepted because

$$0\overset{a}{\rightarrow}0\overset{a}{\rightarrow}1\overset{b}{\rightarrow}2\overset{b}{\rightarrow}3$$

In general, the automaton recognizes any strings that end with abb:

$$L = \{wabb \mid w \in \{a,b\}^*\}$$

ullet An NFA recognizes a string $oldsymbol{w}$ if there is a path in the transition graph labeled by $oldsymbol{w}$.



String aabb is accepted because

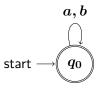
$$0 \stackrel{a}{\rightarrow} 0 \stackrel{a}{\rightarrow} 1 \stackrel{b}{\rightarrow} 2 \stackrel{b}{\rightarrow} 3$$

In general, the automaton recognizes any strings that end with abb:

$$L = \{wabb \mid w \in \{a,b\}^*\}$$

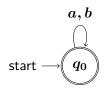
• The language of an NFA is the set of recognizable strings.

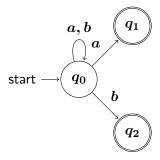
Find the languages of the NFAs:

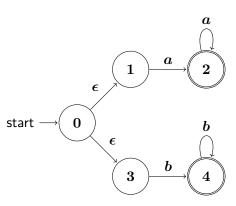


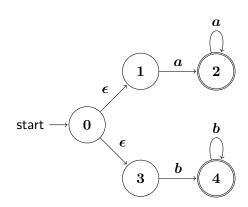
Find the languages of the NFAs:

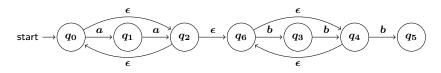
•











Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

- lacktriangledown there are no moves on $m{\epsilon}$, and
- ② for each state and input symbol, the next state is unique.

Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

- $oldsymbol{0}$ there are no moves on $oldsymbol{\epsilon}$, and
- 2 for each state and input symbol, the next state is unique.

Definition (DFA)

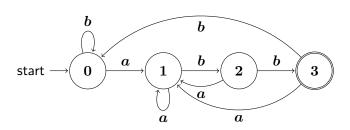
A *deterministic finite automaton* (or *DFA*) is defined by a tuple of five components:

$$M = (Q, \Sigma, \delta, q_0, F)$$

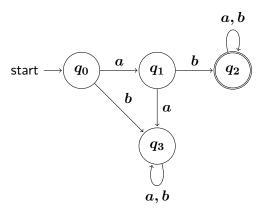
where

- Q: a finite set of states
- ullet Σ : a finite set of *input symbols* (or input alphabet)
- ullet $\delta:Q imes\Sigma o Q$: a total function called transition function
- $q_0 \in Q$: the initial state
- $F \subseteq Q$: a set of *final states*

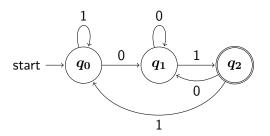
A DFA that accepts $(a \mid b)^*abb$:



What is the language of the DFA?



What is the language of the DFA?



Summary

NFAs and DFAs are string recognizers.

- DFAs provide a concrete algorithm for recognizing strings.
- NFAs bridge the gap between REs and DFAs:
 - REs are descriptive but not executable.
 - ▶ DFAs are executable but not descriptive.
 - ▶ NFAs are in-between the REs and DFAs.