
COSE312: Compilers

Lecture 20 — Data-Flow Analysis (2)

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 1 / 18



Final Exam

6/19 (Mon), 15:30–16:45 (in class)

Do not be late.

Coverage: semantic analysis, IR, Optimization

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 2 / 18



Liveness Analysis

A variable is live at program point p if its value could be used in the
future (along some path starting at p).

Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 3 / 18



Example: Liveness of Variables

We analyze liveness from the future to the past.

The live range of b: {2→ 3, 3→ 4}
The live range of a: {1→ 2, 4→ 5→ 2} (not from 2→ 3→ 4)

The live range of c: the entire code

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 4 / 18



Example: Liveness of Variables

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 5 / 18



Applications

Deadcode elimination
I Problem: Eliminate assignments whose computed values never get

used.
I Solution: How?

Uninitialized variable detection
I Problem: Detect uninitialized use of variables
I Solution: How?

Register allocation
I Problem: Rewrite the intermediate code to use no more temporaries

than there are machine registers
I Example:

a := c + d r1 := r2 + r3

e := a + b r1 := r1 + r4

f := e - 1 r1 := r1 - 1

I Solution: How?

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 6 / 18



Liveness Analysis

The goal is to compute

in : Block → 2Var

out : Block → 2Var

1 Compute def/use sets.

2 Derive transfer functions for each basic block in terms of def/use sets.

3 Derive the set of data-flow equations.

4 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 7 / 18



Def/Use Sets

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 8 / 18



cf) Def/Use sets are only dynamically computable

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 9 / 18



Data-Flow Equations

Intuitions:

1 If a variable is in use(B), then it is live on entry to block B.

2 If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

3 If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:

in(B) = use(B) ∪ (out(B)− def(B))

out(B) =
⋃

B↪→S

in(S)

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 10 / 18



Fixed Point Computation

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {

For all i, update
in(Bi) = use(B) ∪ (out(B)− def(B))
out(Bi) =

⋃
B↪→S in(S)

}

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 11 / 18



Example

1st 2nd 3rd
use def out in out in out in

6 {c} ∅ ∅ {c} ∅ {c} ∅ {c}
5 {a} ∅ {c} {a, c} {a, c} {a, c} {a, c} {a, c}
4 {b} {a} {a, c} {b, c} {a, c} {b, c} {a, c} {b, c}
3 {b, c} {c} {b, c} {b, c} {b, c} {b, c} {b, c} {b, c}
2 {a} {b} {b, c} {a, c} {b, c} {a, c} {b, c} {a, c}
1 ∅ {a} {a, c} {c} {a, c} {c} {a, c} {c}

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 12 / 18



Available Expressions Analysis

An expression x + y is available at a point p if every path from the
entry node to p evaluates x + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 13 / 18



Available Expressions Analysis

The goal is to compute

in : Block → 2Expr

out : Block → 2Expr

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 14 / 18



Gen/Kill Sets

gen(B): the set of expressions evaluated and not subsequently killed

kill(B): the set of expressions whose variables can be killed

Exercise:

What expressions are generated and killed by each of statements?

Statement s gen(s) kill(s)
x = y + z
x = alloc(n)
x = y[i]
x[i] = y

What expressions are generated and killed by the block?

a = b + c
b = a− d
c = b + c
d = a− d

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 15 / 18



1. Set up a set of data-flow equations

Intuitions:

1 At the entry, no expressions are available.

2 An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Equations:

in(ENTRY ) = ∅
out(B) = gen(B) ∪ (in(B)− kill(B))

in(B) =
⋂

P→B

out(B)

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 16 / 18



2. Solve the equations

Trivial solution: in(Bi) = out(Bi) = ∅.
Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY ) = ∅
For other Bi, in(Bi) = out(Bi) = Expr
while (changes to any in and out occur) {

For all i, update
in(Bi) =

⋂
P ↪→Bi

out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))
}

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 17 / 18



Summary: Data-flow Analysis

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 18 / 18


