COSE312: Compilers

Lecture 20 — Data-Flow Analysis (2)

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 1/18

Final Exam

@ 6/19 (Mon), 15:30-16:45 (in class)
@ Do not be late.

@ Coverage: semantic analysis, IR, Optimization

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 2/18

Liveness Analysis

@ A variable is live at program point p if its value could be used in the
future (along some path starting at p).

p x is live p X is dead

X is not used
along all paths
from p to EXIT

w = X EXIT

@ Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 3/18

Example: Liveness of Variables

We analyze liveness from the future to the past.

6 return c

@ The live range of b: {2 — 3,3 — 4}
@ The live range of a: {1 — 2,4 — 5 — 2} (not from 2 — 3 — 4)
@ The live range of c: the entire code

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 4/18

Example: Liveness of Variables

a0 |G
ouT = {a,c}

_ IN = {a,c}
a7 =60

_ IN = {b,c}
ar =0
IN = {b,c}
ouT = {a,ct

!

IN = {a,c}
ouT = {a,c}

6 IN = {c}

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 5/18

Applications

@ Deadcode elimination
» Problem: Eliminate assignments whose computed values never get
used.
» Solution: How?
@ Uninitialized variable detection
» Problem: Detect uninitialized use of variables
» Solution: How?
@ Register allocation
> Problem: Rewrite the intermediate code to use no more temporaries
than there are machine registers

» Example:
a:=c+d rl :=r2 + r3
e :=a+b rl :=rl +r4d
f :=e-1 rl :=r1 -1

» Solution: How?

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 6 /18

Liveness Analysis

The goal is to compute

in : Block — 2Vor
out : Block — 2Ver

@ Compute def/use sets.
@ Derive transfer functions for each basic block in terms of def/use sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 7 /18

Def/Use Sets

Hakjoo Oh COSE312 2017 Spring, Lecture 20

«—

0
]
AN [¢— T ¢ — N0 [«— O [«— Il
+
o

«——

’

return c

def
use

def
use

def
use

def
use

def
use

def
use

{a}
{+

{b}
{a}

{c}
{b,c}

{a}
{b}

{+
{a}

{+
{c}

June 6, 2017

8/18

cf) Def/Use sets are only dynamically computable

!

xa = 0

}

*b = *xa + 1 ‘

l

*%kC = **kC + *b

l

*xa = xb *x 2 ‘

'

‘

6
‘ return *xxc

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 9 /18

Data-Flow Equations

Intuitions:
© If a variable is in use(B), then it is live on entry to block B.

@ If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

© If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:
in(B) = use(B) U (out(B) — def(B))
out(B) = U in(S)

B—S

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 10 / 18

Fixed Point Computation

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update
in(B;) = use(B) U (out(B) — def(B))
out(B;) = Upo,sin(S)

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 11 /18

Example

l

a-e JEZY
use = {}

il

_ def = {b}
ol

+ 1
def = {a}
el

def = {}
use = {a}

6 def = {}
e =t

use = {b,c}

1st 2nd 3rd
use def out in out in out in
6| {c} 0 0 {c} 0 {c} 0 {c}
5 {a} 0 {c} {a,c} | {a,c} {a,c} | {a,c} {a,c}
4| {6} A{a} || {a,c} {b,c} | {a,c} {b,c} | {a,c} {b,c}
3| {b,c} {c} {b,c} {b,c} | {b,c} {b,c} | {b,c} {b,c}
2 {a} {b} {b,c} {a,c} | {b,c} {a,c} | {b,c} {a,c}
1 0 A{a} || {a;c} A{c} |{a,c} {c} [{a,c} {c}
s 6, o

12 /18

Available Expressions Analysis

@ An expression x + y is available at a point p if every path from the
entry node to p evaluates « + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to @ or y.

ENTRY

=] [=] =]

p

@ Application: common subexpression elimination (i.e., given a program
that computes e more than once, eliminate one of the duplicate
computations)

ENTRY

[t1 =y [11=] [t = oy

12 = x+y

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 13 /18

Available Expressions Analysis

The goal is to compute

in : Block — 2E=pr
out : Block — 2%Ezpr

© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 14 /18

Gen/Kill Sets

e gen(B): the set of expressions evaluated and not subsequently killed
o kill(B): the set of expressions whose variables can be killed

Exercise:
@ What expressions are generated and killed by each of statements?

kill(s)

gen(s) |

Statement s
rT=Y—+=z

x = alloc(n)
z = y[i]
zli] =y

@ What expressions are generated and killed by the block?

a=b+c¢c
b=a—-d
c=b+c
d=a—d

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 15 / 18

1. Set up a set of data-flow equations

Intuitions:
© At the entry, no expressions are available.

@ An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Lo J L2 || o |

Equations:

in(ENTRY) =0
out(B) = gen(B) U (in(B) — kill(B))

in(B) = () out(B)

P—B

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 16 / 18

2. Solve the equations

@ Trivial solution: in(B;) = out(B;) = 0.
@ Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY) = 0

For other B;,in(B;) = out(B;) = Expr

while (changes to any in and out occur) {
For all 2, update

in(B;) = ﬂp<—>B,- out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 17 / 18

Summary: Data-flow Analysis

intersection

reaching available
forward L .

definitions expressions
backward liveness

Hakjoo Oh COSE312 2017 Spring, Lecture 20

