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Lexical Analysis

token streams syntax tree
character | Lexical Syntax IR
"1 Analyzer ) Analyzer > Translator
stream Y Y

ex) Given a C program

float matchO (char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
return 0.0;

}

the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN

RETURN REAL(0.0) SEMI RBRACE EOF
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Specification, Recognition, and Automation

@ Specification: how to specify lexical patterns?
> In C, identifiers are strings like x, xy, matchO, and _abc.
» Numbers are strings like 3, 12, 0.012, and 3.5E4.
= regular expressions
@ Recognition: how to recognize the lexical patterns?

» Recognize matchO as an identifier.
» Recognize 512 as a number.

=> deterministic finite automata.

© Automation: how to automatically generate string recognizers from
specifications?
= Thompson's construction and subset construction
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cf) Lexical Analyzer Generator

lexical patterns
in regular expressions
B ————

Lexical Analyzer

Generator
A 4
source program ) stream of tokens
Lexical Analyzer
B — —_—

(string recognizer)

@ lex: a lexical analyzer generator for C
@ jlex: a lexical analyzer generator for Java

@ ocamllex: a lexical analyzer generator for OCaml
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Part 1: Specification

@ Preliminaries: alphabets, strings, languages
@ Syntax and semantics of regular expressions

@ Extensions of regular expressions
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Alphabet

An alphabet 3 is a finite, non-empty set of symbols. E.g,
e ¥ ={0,1}
e ¥ ={a,b,...,z}
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Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1,
01, 10110 are strings over ¥ = {0, 1}. Notations:

@ ¢: the empty string.

@ ww: the concatenation of w and v.

o w!: the reverse of w.

o |w|: the length of string w:

le] =0
lva| =|v|+1
o If w = vu, then v is a prefix of w, and u is a suffix of w.
o XF: the set of strings over 3 of length k

@ X*: the set of all strings over alphabet X:
> =3x'ux'ux?u...= /¢
i€EN
e Xt =3lux?u...=3%*\ {€}
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Languages

A language L is a subset of X*: L C X*,
LyULz, LiNLy, Ly— L2

o LR = {wf | w e L}
o L=X*—1TL
o LiLy ={xzy |z € L1 ANy € L2}
@ The power of a language, L™:
L° = {e}
L™ = L™ 'L
@ The star-closure (or Kleene closure) of a language, L*:
L*=rvr'ur*u...=JIf
i>0

The positive closure of a language, Lt:

L+=L1uL2uL3u---=ULi
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Regular Expressions

A regular expression is a notation to denote a language.

@ Syntax
R — 0
| €
| a€eX
| Rl | R2
| Ri-R;
| Ry
| (R)
@ Semantics
L@ = 0
L(e) = {e}
L(a) = {a}
L(Rl | Rz) = L(Rl) U L(Rz)
L(Ry-Rz) = L(Ri)L(R»)
L(R*) = (L(R))"
L(R)) = L(R)
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Example

L(a* - (a|b)) = L(a*)L(a | b)
= (L(a))*(L(a) U L(b))
= ({a})*({a} U {b})
= {€,a,aa,aaa,...}({a,b})
= {a,aa,aaa,...,b,ab,aab,...}
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Exercises

Write regular expressions for the following languages:
@ The set of all strings over ¥ = {a, b}.
@ The set of strings of a’s and b's, terminated by ab.

@ The set of strings with an even number of a's followed by an odd
number of b's.

The set of C identifiers.
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Regular Definitions

Give names to regular expressions and use the names in subsequent
expressions, e.g., the set of C identifiers:

letter — A|B|---|Z]a|b|---]|z]|_
digit — O|1]|---]9
id — letter(letter | digit)*

Formally, a regular definition is a sequence of definitions of the form:

d1 — T
d2 — T2

d, — 7T

@ Each d; is a new name such that d; € 3.
@ Each r; is a regular expression over ¥ U {d;,dz2,...,d;—1}.
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Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234,
6.336E4, or 1.89E-4:

digit — O0|1|---]|9
digits — digit digit*
optionalFraction — . digits | €
optionalExzponent — (E (+]-|¢€) digits) | €
number — digits optionalFraction optional Exponent
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Extensions of Regular Expressions

@ R™T: the positive closure of R, i.e., L(RT) = L(R) ™.
@ R?: zero or one instance of R, i.e., L(R?) = L(R) U {€}.
@ [aiaz---ay]: the shorthand foray | az | -+ - | an.
Q [ai1-ay]: the shorthand for [aiaz - - - ayn], where ay,...,an, are
consecutive symbols.
» [abc] =a|b|c
» [a-z]=a|b|---| 2.
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Examples

o C identifiers:

letter — [A-Za-z_]
digit — [0-9]
id — letter (letter|digit)*

@ Unsigned numbers:
digit — [0-9]

digits — digit™
number — digits (. digits)? (E [+-]? digits)?
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