COSE312: Compilers

Lecture 2 — Lexical Analysis (1)

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 1/15

Lexical Analysis

token streams syntax tree
character | Lexical Syntax IR
"1 Analyzer) Analyzer > Translator
stream Y Y

ex) Given a C program

float matchO (char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
return 0.0;

}

the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN
LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s)
COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN

RETURN REAL(0.0) SEMI RBRACE EOF

Hakjoo Oh COSE312 2017 Spring, Lecture 2

March 12, 2017

2/15

Specification, Recognition, and Automation

@ Specification: how to specify lexical patterns?
> In C, identifiers are strings like x, xy, matchO, and _abc.
» Numbers are strings like 3, 12, 0.012, and 3.5E4.
= regular expressions
@ Recognition: how to recognize the lexical patterns?

» Recognize matchO as an identifier.
» Recognize 512 as a number.

=> deterministic finite automata.

© Automation: how to automatically generate string recognizers from
specifications?
= Thompson's construction and subset construction

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 3/15

cf) Lexical Analyzer Generator

lexical patterns
in regular expressions
B ————

Lexical Analyzer

Generator
A 4
source program) stream of tokens
Lexical Analyzer
B — —_—

(string recognizer)

@ lex: a lexical analyzer generator for C
@ jlex: a lexical analyzer generator for Java

@ ocamllex: a lexical analyzer generator for OCaml

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 4 /15

Part 1: Specification

@ Preliminaries: alphabets, strings, languages
@ Syntax and semantics of regular expressions

@ Extensions of regular expressions

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 5/ 15

Alphabet

An alphabet 3 is a finite, non-empty set of symbols. E.g,
e ¥ ={0,1}
e ¥ ={a,b,...,z}

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 6 /15

Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1,
01, 10110 are strings over ¥ = {0, 1}. Notations:

@ ¢: the empty string.

@ ww: the concatenation of w and v.

o w!: the reverse of w.

o |w|: the length of string w:

le] =0
lva| =|v|+1
o If w = vu, then v is a prefix of w, and u is a suffix of w.
o XF: the set of strings over 3 of length k

@ X*: the set of all strings over alphabet X:
> =3x'ux'ux?u...= /¢
i€EN
e Xt =3lux?u...=3%*\ {€}
March 12,2017 7 /15

Languages

A language L is a subset of X*: L C X*,
LyULz, LiNLy, Ly— L2

o LR = {wf | w e L}
o L=X*—1TL
o LiLy ={xzy |z € L1 ANy € L2}
@ The power of a language, L™:
L° = {e}
L™ = L™ 'L
@ The star-closure (or Kleene closure) of a language, L*:
L*=rvr'ur*u...=JIf
i>0

The positive closure of a language, Lt:

L+=L1uL2uL3u---=ULi

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 8 /15

Regular Expressions

A regular expression is a notation to denote a language.

@ Syntax
R — 0
| €
| a€eX
| Rl | R2
| Ri-R;
| Ry
| (R)
@ Semantics
L@ = 0
L(e) = {e}
L(a) = {a}
L(Rl | Rz) = L(Rl) U L(Rz)
L(Ry-Rz) = L(Ri)L(R»)
L(R*) = (L(R))"
L(R)) = L(R)

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 9 /15

Example

L(a* - (a|b)) = L(a*)L(a | b)
= (L(a))*(L(a) U L(b))
= ({a})*({a} U {b})
= {€,a,aa,aaa,...}({a,b})
= {a,aa,aaa,...,b,ab,aab,...}

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 10 / 15

Exercises

Write regular expressions for the following languages:
@ The set of all strings over ¥ = {a, b}.
@ The set of strings of a’s and b's, terminated by ab.

@ The set of strings with an even number of a's followed by an odd
number of b's.

The set of C identifiers.

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 11 /15

Regular Definitions

Give names to regular expressions and use the names in subsequent
expressions, e.g., the set of C identifiers:

letter — A|B|---|Z]a|b|---]|z]|_
digit — O|1]|---]9
id — letter(letter | digit)*

Formally, a regular definition is a sequence of definitions of the form:

d1 — T
d2 — T2

d, — 7T

@ Each d; is a new name such that d; € 3.
@ Each r; is a regular expression over ¥ U {d;,dz2,...,d;—1}.

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 12 /15

Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234,
6.336E4, or 1.89E-4:

digit — O0|1|---]|9
digits — digit digit*
optionalFraction — . digits | €
optionalExzponent — (E (+]-|¢€) digits) | €
number — digits optionalFraction optional Exponent

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 13 /15

Extensions of Regular Expressions

@ R™T: the positive closure of R, i.e., L(RT) = L(R) ™.
@ R?: zero or one instance of R, i.e., L(R?) = L(R) U {€}.
@ [aiaz---ay]: the shorthand foray | az | -+ - | an.
Q [ai1-ay]: the shorthand for [aiaz - - - ayn], where ay,...,an, are
consecutive symbols.
» [abc] =a|b|c
» [a-z]=a|b|---| 2.

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 14 / 15

Examples

o C identifiers:

letter — [A-Za-z_]
digit — [0-9]
id — letter (letter|digit)*

@ Unsigned numbers:
digit — [0-9]

digits — digit™
number — digits (. digits)? (E [+-]? digits)?

Hakjoo Oh COSE312 2017 Spring, Lecture 2 March 12, 2017 15 / 15

	Regular Expressions

