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Data-Flow Analysis

A collection of program analysis techniques that derive information about
the flow of data along program execution paths, enabling safe code
optimization, bug detection, etc.

@ Reaching definitions analysis
@ Live variables analysis

@ Available expressions analysis
@ Constant propagation analysis
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Reaching Definitions Analysis

o A definition d reaches a point p if there is a path from the definition
point to p such that d is not “killed” along that path.

x is not “killed”

@ For each program point, RDA finds definitions that can reach the
program point along some execution paths.
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Example: Reaching Definitions Analysis

ENTRY

Blld1: i = m-1 IN(B1) = {}
d2: j =n
d3: a = ul 0UT(B1) = {d1,d2,d3}
i+l IN(B2) = {d1,d2,d3,d5,d6,d7}
j-1 OUT(B2) = {d3,d4,d5,d6}

IN(B3) = {d3,d4,d5,d6}
0UT(B3) = {d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}
0UT(B4) = {d3,d5,d6,d7}

IN(EXIT) = {d3,d5,d6,d7}
EXIT
OUT(EXIT) = {d3,d5,d6,d7}

:
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Applications

Reaching definitions analysis has many applications, e.g.,
@ Simple constant propagation

» For a use of variable v in statement n:
» |f the definitions of v that reach n are all of the form

» Replace the use of v in n by c
@ Uninitialized variable detection

» Put a definition at the program entry.
» For a use of variable x in statement n:

If d reaches n, x is potentially uninitialized.

v

@ Loop optimization
» If all of the reaching definitions of the operands of n are outside of the
loop, then n can be moved out of the loop (“loop-invariant code
motion” )
» while (...) {...; n: z=x+1y; ... }
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The Analysis is Conservative

@ Exact reaching definitions information cannot be obtained at compile
time. It can be obtained only at runtime.
@ ex) Deciding whether each path can be taken is undecidable:
a =rand(); b = rand(); ¢ = rand();
if (a”10 + 10 != ¢~10) { // always true
// (1)
} else {
/7 (2)
}

@ RDA computes an over-approximation of the reaching definitions that
can be obtained at runtime.
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Reaching Definitions Analysis

The goal is to compute

in : Block — 2Definitions
out : Block — 2Deﬁm’tions

@ Compute gen/Kkill sets.
@ Derive transfer functions for each block in terms of gen/kill sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.
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1. Compute Gen/Kill Sets

gen : Block — 2Definitions
kil : Block — 2Definitions

e gen(B): the set of definitions “generated” at block B
o kill(B): the set of definitions “killed” at block B
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Example

Bl{gq: 4 = m_
g;: ; - 2 1 gen(B1) =
43t 3 = ul kill(B1) =
i+1 gen(B2) =
j-1 kill(B2) =
gen(B3) =
kill(B3) =
gen(B4) =
u3 kill(B4) =
A
EXIT
il b 2y
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Exercise
Compute the gen and kill sets for the basic block B:

dl: a =3
d2: a 4

e gen(B) =
e kill(B) =
In general, when we have k definitions in a block B:

dil; d2; ...; d_k

e gen(B) =
e kill(B) =
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2. Transfer Functions

@ The transfer function is defined for each basic block B:

fB . 2Deﬁmtzons N 2Deﬁmtzons

@ The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

d4:
B2 |d5:

i

j

i+l
j-1

{d1,d2,d3,d5,d6,d7}

{d3,d4,d5,d6}

@ The semantics of B is defined in terms of gen(B) and kill(B):

fB(X) =
d4: i = i+1
B2ld5: j = -1

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}
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3. Derive Data-Flow Equations

in(Bl)
out(Bl)

in(Bz)
Out(Bz)

in(B3)
out(B3)

in(B4)
out(B4)
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fB, (in(B1))

out(B1) U out(By4)
fB5(in(B2))

Out(Bz)
IB3(in(Bs))

out(Bz2) U out(B3)
fB4(in(Ba))
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Data-Flow Equations

In general, the data-flow equations can be written as follows:

in(B;) = | out(P)

P—B;
out(B;) = fB,(in(B;))
= gen(B;) U (in(B;) — kill(B;))

where (<) is the control-flow relation.
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4. Solve the Equations

@ The desired solution is the least in and out that satisfies the
equations (why least?):

in(B;) = Up.,p,out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

@ The solution is defined as fix F', where F' is defined as follows:

F(in,out) = (AB. [ out(P),AB.fz(in(B))
P—B

The least fixed point fiz F' is computed by

U Fi(AB.0, \B.0)

i>0
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The Fixpoint Algorithm

The equations are solved by the iterative fixed point algorithm:

For all 4,in(B;) = out(B;) = 0
while (changes to any in and out occur) {
For all 2, update

in(B;) = Up, p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))
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Example

Pldi: i = m-1 IN(B1) = {}
d2: j =n
d3: a = ul ouT(B1) = {}
B2[d4: i = i+1 IN(B2) = {}
d5: j = j-1 0UT(B2) = {}
IN(B3) = {}
ouT(B3) = {}

IN(B4) = {}
ouT(B4) = {}

IN(EXIT) = {}
EXIT
OUT(EXIT) = {}

:
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Summary

o Code optimization requires static analysis, data-flow analysis.
o Every static analysis follows two steps:
@ Set up a set of abstract semantic equations.
* about dynamics of program executions (e.g., how definitions flow)
@ Solve the equations using the iterative fixed point algorithm.
* naive tabulation algorithm, worklist algorithm, etc
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