
COSE312: Compilers

Lecture 18 — Optimization (1)

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 1 / 11



Middle End: Optimizer

Converts the source program into a more efficient yet semantically
equivalent program.

ex)

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 2 / 11



Common Optimization Passes

Common subexpressions elimination

Copy propagation

Deadcode elimination

Constant folding

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 3 / 11



Common Subexpression Elimination

An occurrence of an expression E is called a common subexpression if
E was previously computed and the values of the variables in E have
not changed since the previous computation.

x = 2 * k + 1

... // no defs to k

y = 2 * k + 1

We can avoid recomputing E by replacing E by the variable that
holds the previous value of E.

x = 2 * k + 1

... // no defs to k

y = x

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 4 / 11



Copy Propagation

After the copy statement u = v, use v for u unless u is re-defined.

u = v u = v

x = u + 1 x = v + 1

u = x => u = x

y = u + 2 y = u + 2

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 5 / 11



Deadcode Elimination

A variable is live at a point in a program if its value is used
eventually; otherwise it is dead at that point.

A statement is said to be deadcode if it computes values that never
get used.

u = v // deadcode

x = v + 1

u = x

y = u + 2

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 6 / 11



Constant Folding

Decide that the value of an expression is a constant and use the constant
instead.

c = 1 c = 1

x = c + c => x = 2

y = x + x y = 4

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 7 / 11



Example: Original Program

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 8 / 11



Example: Optimized Program

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 9 / 11



Static analysis is needed

To optimize a program, we need static analysis that derives information
about the flow of data along program execution paths. Examples:

Do the two textually identical expressions evaluate to the same value
along any possible execution path of the program? (If so, we can
apply common subexpression elimination)

Is the result of an assignment not used along any subsequent
execution path? (If so, we can apply deadcode elimination).

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 10 / 11



Summary

Code Optimization:

Code transformation to have better performance

Execution of transformed code must produce same results as the
original code for all possible executions

Static analysis is needed (called data-flow analysis)

Hakjoo Oh COSE312 2017 Spring, Lecture 18 May 31, 2017 11 / 11


