
COSE312: Compilers

Lecture 17 — Intermediate Representation (2)

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 1 / 19

Common Intermediate Representations

Three-address code

Static single assignment form

Control-flow graph

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 2 / 19

Three-Address Code

Instructions with at most one operator on the right side.

Temporary variables are needed in translation, e.g., x+ y ∗ z:

t1 = y ∗ z
t2 = x+ t1

A linearized representation of a syntax tree, where temporary variables
correspond to the internal nodes of the tree: e.g.,

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 3 / 19

Static Single Assignment Form

An intermediate representation suitable for many code optimizations.

A program is in SSA iff
1 each definition has a distinct name, and
2 each use refers to a single definition.

Example) Convert the following code into SSA form:

p = a + b

q = p - c

p = q * c

p = e - p

q = p + q

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 4 / 19

Static Single Assignment Form

The SSA form of the following:

if (flag) x = -1; else x = 1;

y = x * a;

needs a φ-function:

if (flag) x1 = -1; else x2 = 1;

x3 = φ(x1, x2);

y = x3 * a;

Here, φ(x1, x2) has the value x1 if the control flow passes through the
true branch and the value x2 otherwise.

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 5 / 19

Static Single Assignment Form

Exercise) Convert the following code into an SSA form:

i = 1

j = 1

k = 0

while (1) {

if (k < 100) {

if (j < 20)

j = i

k = k + 1

else

j = k

k = k + 2

}

else return j

}

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 6 / 19

i1 = 1

j1 = 1

k1 = 0

while (1) {

j2 = phi(j4, j1)

k2 = phi(k4, k1)

if (k2 < 100) {

if (j2 < 20)

j3 = i1

k3 = k2 + 1

else

j5 = k2

k5 = k2 + 2

}

else return j2

j4 = phi(j3, j5)

k4 = phi(k3, k5)

}

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 7 / 19

How to Convert a Program into SSA?

Cytron et al.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph.
ACM Transactions on Programming Languages and Systems
(TOPLAS), Volume 13 Issue 4, Pages 451-490

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 8 / 19

Control-Flow Graph

Control-Flow Graph (CFG): graph representation of the program
I A commonly used form for static analysis and optimization
I Nodes are basic blocks
I Edges represent control flows

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 9 / 19

Basic Blocks

Maximal sequences of consecutive, branch-free instructions.

x = 1

y = 1

z = x + y

L: t1 = z + 1

t1 = t1 + 1

z = t1

goto L

Properties:
I Instructions in a basic block are always executed together.
I No jumps to the middle of a basic block.
I No jumps out of a basic block, except for the last instruction.

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 10 / 19

Partitioning Instructions into Basic Blocks

Given a sequence of instructions:

Determine leaders, the first instructions in some basic block.
1 The first instruction is a leader.
2 Any instruction that is the target of a conditional or unconditional

jump is a leader.
3 Any instruction that immediately follows a conditional or unconditional

jump is a leader.

For each leader, its basic block consists of itself and all instruction up
to but not including the next leader or the end of the program.

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 11 / 19

Example

i = 1

L1: j = 1

L2: t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0

j = j + 1

if j <= 10 goto L2

i = i + 1

if i <= 10 goto L1

i = 1

L3: t5 = i - 1

t6 = 88 * t5

a[t6] = 1

i = i + 1

if i <= 10 goto L3

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 12 / 19

Control-Flow Graph

A graph representation of intermediate code:

A directed graph G = (N, ↪→), where each node n ∈ N is a basic
block and an edge (n1, n2) ∈ (↪→) indicates a possible control flow
of the program.

n1 ↪→ n2 iff
I there is a conditional or unconditional jump from the end of n1 to the

beginning of n2, or
I n2 immediately follows n1 in the original program, and n1 does not

end in an unconditional jump.

Often, control-flow graphs have unique entry and exit nodes.

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 13 / 19

Example

i = 1

L1: j = 1

L2: t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0

j = j + 1

if j <= 10 goto L2

i = i + 1

if i <= 10 goto L1

i = 1

L3: t5 = i - 1

t6 = 88 * t5

a[t6] = 1

i = i + 1

if i <= 10 goto L3

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 14 / 19

CFG Construction for High-level Languages

High-level statements:

S → x := e | S1;S2 | if e S1 S2 | while e S

CFG(S): control-flow graph of S

CFG(S) is recursively defined

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 15 / 19

CFG Construction for High-level Languages

x := e

S1;S2

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 16 / 19

CFG Construction for High-level Languages

if e S1 S2

while e S

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 17 / 19

Example

while (c) {

x = y;

y = 2;

if(d) x = y;

else y = x;

z = 1;

}

z = x

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 18 / 19

Summary

Intermediate Representations:

Three-address code

Static single assignment form

Control-flow graph

Hakjoo Oh COSE312 2017 Spring, Lecture 17 May 31, 2017 19 / 19

