COSE312: Compilers

Lecture 14 — Semantic Analysis (4)

Hakjoo Oh 2017 Spring

Denotational Semantics

- In denotational semantics, we are interested in the mathematical meaning of a program.
- *Compositional semantics*: The meaning of an expression is defined with the meanings of its immediate subexpressions.

Denotational Semantics of Expressions

$$egin{array}{lll} a &
ightarrow & n \mid x \mid a_1 + a_2 \mid a_1 \star a_2 \mid a_1 \leq a_2 \mid \neg b \mid b_1 \wedge b_2 \\ b &
ightarrow & {
m true} \mid {
m false} \mid a_1 = a_2 \mid a_1 \leq a_2 \mid \neg b \mid b_1 \wedge b_2 \\ c &
ightarrow & x := a \mid {
m skip} \mid c_1; c_2 \mid {
m if} b \; c_1 \; c_2 \mid {
m while} b \; c \\ & \mathcal{A} \llbracket \; a \;
right] \; : & {
m State} &
ightarrow \mathbb{Z} \\ & \mathcal{A} \llbracket \; n \;
right] (s) & = & n \\ & \mathcal{A} \llbracket \; x \;
right] (s) & = & s(x) \\ & \mathcal{A} \llbracket \; a_1 + a_2 \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) + \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{A} \llbracket \; a_1 + a_2 \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) \times \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{A} \llbracket \; a_1 + a_2 \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) - \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{B} \llbracket \; b \;
right] \; : \; {
m State} &
ightarrow {
m T} \\ & \mathcal{B} \llbracket \; {
m true} \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) - \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{B} \llbracket \; a_1 = a_2 \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) + \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{B} \llbracket \; a_1 \leq a_2 \;
right] (s) & = & \mathcal{A} \llbracket \; a_1 \;
right] (s) + \mathcal{A} \llbracket \; a_2 \;
right] (s) \\ & \mathcal{B} \llbracket \; b_1 \wedge b_2 \;
right] (s) & = & \mathcal{B} \llbracket \; b_1 \;
right] (s) \wedge \mathcal{B} \llbracket \; b_2 \;
right] (s) \\ & \mathcal{B} \llbracket \; b_1 \wedge b_2 \;
right] (s) & = & \mathcal{B} \llbracket \; b_1 \;
right] (s) \wedge \mathcal{B} \llbracket \; b_2 \;
right] (s) \\ \end{array}$$

Denotational Semantics of Commands

where

$$\operatorname{\mathsf{cond}}(f,g,h) = \lambda s. \left\{ egin{array}{l} g(s) & \cdots f(s) = \mathit{true} \\ h(h) & \cdots f(s) = \mathit{false} \end{array}
ight. \ F(g) = \operatorname{\mathsf{cond}}(\mathcal{B} \llbracket \ b \
rbracket , g \circ \mathcal{C} \llbracket \ c \
rbracket , \mathsf{id}) \end{array}$$

Denotational Semantics of Loops

Note that the meaning of the while loop is the mathematical object (i.e. partial function in $State \hookrightarrow State$) that satisfies the equation:

$$\mathcal{C}[\![\![\ \text{while}\ b\ c\]\!] = \mathsf{cond}(\mathcal{B}[\![\![\ b\]\!],\mathcal{C}[\![\![\ \text{while}\ b\ c\]\!] \circ \mathcal{C}[\![\![\ c\]\!],\mathsf{id}).$$

We can rewrite the equation:

$$\mathcal{C}[\![\![$$
 while $b\ c\]\!]=F(\mathcal{C}[\![\![\![$ while $b\ c\]\!]\!])$

where

$$F(g) = \operatorname{cond}(\mathcal{B}[\![b]\!], g \circ \mathcal{C}[\![c]\!], \operatorname{id}).$$

The meaning of the while loop is defined to be the fixed point of F:

where fixF denotes the least fixed point of F.

Example

while
$$\neg(x=0)$$
 skip

- **F**
- \bullet fix F

Some Questions

- ullet Does the least fixed point $f\!ixF$ exist?
- Is fixF unique?
- How to compute fixF?

Fixed Point Theory

Theorem

Let f:D o D be a continuous function on a CPO D . Then f has a (unique) least fixed point, $f\!ix(f)$, and

$$fix(f) = \bigsqcup_{n \geq 0} f^n(\perp).$$

The denotational semantics is well-defined if

- State \hookrightarrow State is a CPO, and
- $F: (State \hookrightarrow State) \rightarrow (State \hookrightarrow State)$ is a continuous function.

Plan

- Complete Partial Order
- Continuous Functions
- Least Fixed Point

Partially Ordered Set

Definition (Partial Order)

We say a binary relation \sqsubseteq is a partial order on a set D iff \sqsubseteq is

- ullet reflexive: $orall p \in D$. $p \sqsubseteq p$
- ullet transitive: $orall p,q,r\in D.\ p\sqsubseteq q\ \wedge\ q\sqsubseteq r\implies p\sqsubseteq r$
- ullet anti-symmetric: $orall p, q \in D. \ p \sqsubseteq q \ \land \ q \sqsubseteq p \implies p = q$

We call such a pair (D, \sqsubseteq) partially ordered set, or poset.

Lemma

If a partially ordered set (D,\sqsubseteq) has a least element d, then d is unique.

Exercise

Let S be a non-empty set. Prove that $(\mathcal{P}(S),\subseteq)$ is a partially ordered set.

Exercise

Let $X \hookrightarrow Y$ be the set of all partial functions from a set X to a set Y, and define $f \sqsubseteq g$ iff

$$\mathsf{Dom}(f) \subseteq \mathsf{Dom}(g) \ \land \ \forall x \in \mathsf{Dom}(f). \ f(x) = g(x).$$

Prove that $(X \hookrightarrow Y, \sqsubseteq)$ is a partially ordered set.

Least Upper Bound

Definition (Least Upper Bound)

Let (D,\sqsubseteq) be a partially ordered set and let Y be a subset of D. An upper bound of Y is an element d of D such that

$$\forall d' \in Y. \ d' \sqsubseteq d.$$

An upper bound d of Y is a least upper bound if and only if $d \sqsubseteq d'$ for every upper bound d' of Y. The least upper bound of Y is denoted by $\bigsqcup Y$.

Lemma

If Y has a least upper bound d, then d is unique.

Chain

Definition (Chain)

Let (D, \sqsubseteq) be a poset and Y a subset of D. Y is called a chain if Y is totally ordered:

$$\forall y_1,y_2 \in Y.y_1 \sqsubseteq y_2 \text{ or } y_2 \sqsubseteq y_1.$$

Example

Consider the poset $(\mathcal{P}(\{a,b,c\}),\subseteq)$.

- $Y_1 = \{\emptyset, \{a\}, \{a, c\}\}$
- $\bullet \ Y_2 = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$

Complete Partial Order (CPO)

Definition (CPO)

A poset (D, \sqsubseteq) is a CPO, if every chain $Y \subseteq D$ has $| | Y \in D$.

Definition (Complete Lattice)

A poset (D, \sqsubseteq) is a complete lattice, if every subset $Y \subseteq D$ has $\mid \mid Y \in D$.

Lemma

If (D, \sqsubseteq) is a CPO, then it has a least element \bot given by $\bot = \bigcup \emptyset$.

Examples

Example

Let S be a non-empty set. Then, $(\mathcal{P}(S), \subseteq)$ is a CPO. The lub $\coprod Y$ for Y is $\bigcup Y$. The least element is \emptyset .

Examples

Example

The poset $(X \hookrightarrow Y, \sqsubseteq)$ of all partial functions from a set X to a set Y, equipped with the partial order

$$\mathrm{Dom}(f)\subseteq \mathrm{Dom}(g) \ \wedge \ \forall x\in \mathrm{Dom}(f).\ f(x)=g(x)$$

is a CPO (but not a complete lattice). The lub of a chain Y is the partial function f with ${\sf Dom}(f)=\bigcup_{f_i\in Y}{\sf Dom}(f_i)$ and

$$f(x) = \left\{egin{array}{ll} f_n(x) & \cdots x \in \mathsf{Dom}(f_i) ext{ for some } f_i \in Y \ ext{ undef} & \cdots ext{ otherwise} \end{array}
ight.$$

The least element $\perp = \lambda x$.undef.

Monotone Functions

Definition (Monotone Functions)

A function f:D o E between posets is *monotone* iff

$$\forall d, d' \in D. \ d \sqsubseteq d' \implies f(d) \sqsubseteq f(d').$$

Example

Consider $(\mathcal{P}(\{a,b,c\}),\subseteq)$ and $(\mathcal{P}(\{d,e\}),\subseteq)$ and two functions $f_1,f_2:\mathcal{P}(\{a,b,c\})\to\mathcal{P}(\{d,e\})$

Exercise

Determine which of the following functionals of

$$(State \hookrightarrow State) \rightarrow (State \hookrightarrow State)$$

are monotone:

- **1** $F_0(g) = g$.
- $m{e} F_1(g) = \left\{ egin{array}{ll} g_1 & \cdots g_1 = g_2 \ g_2 & \cdots otherwise \end{array}
 ight. ext{ where } g_1
 eq g_2.$
- $F_2(g) = \lambda s. \begin{cases} g(s) & \cdots s(x) \neq 0 \\ s & \cdots s(x) = 0 \end{cases}$

Properties of Monotone Functions

Lemma

Let (D_1,\sqsubseteq_1) , (D_2,\sqsubseteq_2) , and (D_3,\sqsubseteq_3) be CPOs. Let $f:D_1\to D_2$ and $g:D_2\to D_3$ be monotone functions. Then, $g\circ f:D_1\to D_3$ is a monotone function.

Properties of Monotone Functions

Lemma

Let (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) be CPOs. Let $f:D_1\to D_2$ be a monotone function. If Y is a chain in D_1 , then $f(Y)=\{f(d)\mid d\in Y\}$ is a chain in D_2 . Furthermore,

$$\bigsqcup f(Y) \sqsubseteq f(\bigsqcup Y).$$

Continuous Functions

Definition (Continuous Functions)

A function $f:D_1\to D_2$ defined on posets (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) is continuous if it is monotone and it preserves least upper bounds of chains:

$$\bigsqcup f(Y) = f(\bigsqcup Y)$$

for all non-empty chains Y in D_1 . If $f(\bigsqcup Y) = \bigsqcup f(Y)$ holds for the empty chain (that is, $\bot = f(\bot)$), then we say that f is strict.

Properties of Continuous Functions

Lemma

Let $f:D_1\to D_2$ be a monotone function defined on posets (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) and D_1 is a finite set. Then, f is continuous.

Properties of Continuous Functions

Lemma

Let (D_1,\sqsubseteq_1) , (D_2,\sqsubseteq_2) , and (D_3,\sqsubseteq_3) be CPOs. Let $f:D_1\to D_2$ and $g:D_2\to D_3$ be continuous functions. Then, $g\circ f:D_1\to D_3$ is a continuous function.

Least Fixed Points

Definition (Fixed Point)

Let (D, \sqsubseteq) be a poset. A *fixed point* of a function $f: D \to D$ is an element $d \in D$ such that f(d) = d. We write fix(f) for the *least fixed point* of f, if it exists, such that

- f(fix(f)) = fix(f)
- $\bullet \ \forall d \in D. \ f(d) = d \implies \mathit{fix}(f) \sqsubseteq d$

Fixed Point Theorem

Theorem (Kleene Fixed Point)

Let f:D o D be a continuous function on a CPO D. Then f has a least fixed point, fix(f), and

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$$

where
$$f^n(ot) = \left\{egin{array}{ll} ot & n=0 \ f(f^{n-1}(ot)) & n>0 \end{array}
ight.$$

Proof

We show the claims of the theorem by showing that $\bigsqcup_{n\geq 0} f^n(\bot)$ exists and it is indeed equivalent to fix(f). First note that $\bigsqcup_{n\geq 0} f^n(\bot)$ exists because $f^0(\bot) \sqsubseteq f^1(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \ldots$ is a chain. We show by induction that $\forall n \in \mathbb{N} \cdot f^n(\bot) \sqsubseteq f^{n+1}(\bot)$:

- $\bot \sqsubseteq f(\bot)$ (\bot is the least element)
- ullet $f^n(ot)\sqsubseteq f^{n+1}(ot) \implies f^{n+1}(ot)\sqsubseteq f^{n+2}(ot)$ (monotonicity of f)

Now, we show that $fix(f) = \bigsqcup_{n \ge 0} f^n(\bot)$ in two steps:

ullet We show that $\bigsqcup_{n\geq 0} f^n(\bot)$ is a fixed point of f:

$$f(\bigsqcup_{n\geq 0}f^n(\perp))=\bigsqcup_{n\geq 0}f(f^n(\perp))$$
 continuity of f
$$=\bigsqcup_{n\geq 0}f^{n+1}(\perp)$$

$$=\bigsqcup_{n\geq 0}f^n(\perp)$$

Proofs

• We show that $\bigsqcup_{n\geq 0} f^n(\bot)$ is smaller than all the other fixed points. Suppose d is a fixed point, i.e., f(d)=d. Then,

$$\bigsqcup_{n\geq 0} f^n(\bot) \sqsubseteq d$$

since $\forall n \in \mathbb{N}.f^n(\bot) \sqsubseteq d$:

$$f^0(\bot) = \bot \sqsubseteq d, \qquad f^n(\bot) \sqsubseteq d \implies f^{n+1}(\bot) \sqsubseteq f(d) = d.$$

Therefore, we conclude

$$fix(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

Well-definedness of the Semantics

The function $oldsymbol{F}$

$$F(g) = \operatorname{cond}(\mathcal{B}[\![\ b \]\!], g \circ \mathcal{C}[\![\ c \]\!], \operatorname{id})$$

is continuous.

Lemma

Let $g_0: \mathrm{State} \hookrightarrow \mathrm{State}, p: \mathrm{State} \to \mathrm{T}$, and define

$$F(g) = \operatorname{cond}(p, g, g_0).$$

Then, F is continuous.

Lemma

Let g_0 : State \hookrightarrow State, and define

$$F(g) = g \circ g_0$$
.

Then F is continuous.