COSE312: Compilers

Lecture 11 - Semantic Analysis (1)

Hakjoo Oh
2017 Spring

Semantic Analysis


```
int a[10] = {...};
int x = rand();
int y = 1;
if (x > 0) {
    if (x < 15) {
        if (x < 10) a[x] = "hello" + 1;
        a[x] = 1;
    }
} else {
    y = y / x;
}
```


Syntax vs. Semantics

A programming language is defined with syntax and semantics.

- The syntax is concerned with the grammatical structure of programs.
- Context-free grammar
- The semantics is concerned with the meaning of grammatically correct programs.
- Operational semantics: The meaning is specified by the computation steps executed on a machine. It is of intrest how it is obtained.
- Denotational semantics: The meaning is modelled by mathematical objects that represent the effect of executing the program. It is of interest the effect, not how it is obtained.

The While Language

n will range over numerals, Num
\boldsymbol{x} will range over variables, Var
a will range over arithmetic expressions, Aexp
b will range over boolean expressions, Bexp
S will range over statements, Stm

$$
\begin{aligned}
a & \rightarrow n|x| a_{1}+a_{2}\left|a_{1} \star a_{2}\right| a_{1}-a_{2} \\
b & \rightarrow \text { true } \mid \text { false }\left|a_{1}=a_{2}\right| a_{1} \leq a_{2}|\neg b| b_{1} \wedge b_{2} \\
c & \rightarrow x:=a \mid \text { skip }\left|c_{1} ; c_{2}\right| \text { if } b c_{1} c_{2} \mid \text { while } b c
\end{aligned}
$$

Semantics of Arithmetic Expressions

- The meaning of an expression depends on the values bound to the variables that occur in the expression, e.g., $\boldsymbol{x}+\mathbf{3}$.
- A state is a function from variables to values:

$$
\text { State }=\operatorname{Var} \rightarrow \mathbb{Z}
$$

- The meaning of arithmetic expressions is a function:
$\mathcal{A}: \operatorname{Aexp} \rightarrow$ State $\rightarrow \mathbb{Z}$
$\mathcal{A} \llbracket a \rrbracket: \quad$ State $\rightarrow \mathbb{Z}$
$\mathcal{A} \llbracket n \rrbracket(s)=n$
$\mathcal{A} \llbracket x \rrbracket(s)=s(x)$
$\mathcal{A} \llbracket a_{1}+a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)+\mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{A} \llbracket a_{1} \star a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s) \times \mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{A} \llbracket a_{1}-a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)-\mathcal{A} \llbracket a_{2} \rrbracket(s)$

Exercise

Add the arithmetic expression -a to our language.

Semantics of Boolean Expressions

- The meaning of boolean expressions is a function:

$$
\mathcal{B}: \mathbf{B e x p} \rightarrow \text { State } \rightarrow \mathbf{T}
$$

where $\mathbf{T}=\{$ true, false $\}$.
$\mathcal{B} \llbracket b \rrbracket \quad: \quad$ State $\rightarrow \mathbf{T}$
$\mathcal{B} \llbracket$ true $\rrbracket(s)=$ true
$\mathcal{B} \llbracket$ false $\rrbracket(s)=$ false
$\mathcal{B} \llbracket a_{1}=a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s)=\mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{B} \llbracket a_{1} \leq a_{2} \rrbracket(s)=\mathcal{A} \llbracket a_{1} \rrbracket(s) \leq \mathcal{A} \llbracket a_{2} \rrbracket(s)$
$\mathcal{B} \llbracket \neg b \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket(s)=$ false
$\mathcal{B} \llbracket b_{1} \wedge b_{2} \rrbracket(s)=\mathcal{B} \llbracket b_{1} \rrbracket(s) \wedge \mathcal{B} \llbracket b_{2} \rrbracket(s)$

Free Variables

The free variables of an arithmetic expression \boldsymbol{a} are defined to be the set of variables occurring in it:

$$
\begin{aligned}
F V(n) & =\emptyset \\
F V(x) & =\{x\} \\
F V\left(a_{1}+a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup \boldsymbol{F V}\left(a_{2}\right) \\
F V\left(a_{1} \star a_{2}\right) & =\boldsymbol{F V}\left(a_{1}\right) \cup \boldsymbol{F} \boldsymbol{V}\left(a_{2}\right) \\
\boldsymbol{F V}\left(a_{1}-a_{2}\right) & =\boldsymbol{F} \boldsymbol{V}\left(a_{1}\right) \cup \boldsymbol{F} \boldsymbol{V}\left(a_{2}\right)
\end{aligned}
$$

Exercise

Define free variables of boolean expressions.

Property of Free Variables

Lemma

Let s and s^{\prime} be two states satisfying that $s(x)=s^{\prime}(x)$ for all $x \in \boldsymbol{F} \boldsymbol{V}(\boldsymbol{a})$. Then, $\mathcal{A} \llbracket a \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s^{\prime}\right)$.

Lemma

Let s and s^{\prime} be two states satisfying that $s(x)=s^{\prime}(x)$ for all $x \in \boldsymbol{F} \boldsymbol{V}(\boldsymbol{b})$. Then, $\mathcal{B} \llbracket b \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket\left(s^{\prime}\right)$.

Substitution

- $a\left[y \mapsto a_{0}\right]$: the arithmetic expression that is obtained by replacing each occurrence of \boldsymbol{y} in \boldsymbol{a} by \boldsymbol{a}_{0}.

$$
\begin{aligned}
n\left[y \mapsto a_{0}\right] & =n \\
x\left[y \mapsto a_{0}\right] & = \begin{cases}a_{0} & \text { if } x=y \\
x & \text { if } x \neq y\end{cases} \\
\left(a_{1}+a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)+\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1} \star a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right) \star\left(a_{2}\left[y \mapsto a_{0}\right]\right) \\
\left(a_{1}-a_{2}\right)\left[y \mapsto a_{0}\right] & =\left(a_{1}\left[y \mapsto a_{0}\right]\right)-\left(a_{2}\left[y \mapsto a_{0}\right]\right)
\end{aligned}
$$

- $s[\boldsymbol{y} \mapsto \boldsymbol{v}]$: the state s except that the value bound to \boldsymbol{y} is \boldsymbol{v}.

$$
(s[y \mapsto v])(x)= \begin{cases}\boldsymbol{v} & \text { if } \boldsymbol{x}=\boldsymbol{y} \\ s(x) & \text { if } \boldsymbol{x} \neq \boldsymbol{y}\end{cases}
$$

Exercise

Prove that the two concepts of substitutions are related as follows:
Lemma
$\mathcal{A} \llbracket a\left[y \mapsto a_{0} \rrbracket \rrbracket(s)=\mathcal{A} \llbracket a \rrbracket\left(s\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket(s) \rrbracket\right)\right.\right.$ for all states s.

Exercise

Define substitution for boolean expressions: $\boldsymbol{b}\left[\boldsymbol{y} \mapsto \boldsymbol{a}_{0}\right]$. Prove that

$$
\mathcal{B} \llbracket b\left[y \mapsto a_{0} \rrbracket \rrbracket(s)=\mathcal{B} \llbracket b \rrbracket\left(s\left[y \mapsto \mathcal{A} \llbracket a_{0} \rrbracket(s) \rrbracket\right)\right.\right.
$$

holds for all states s.

Mid-term Exam

- 4/24 (Mon), 15:30-16:45 (in class)
- Do not be late.
- Coverage: lexical analysis, syntax analysis
- Based on lectures and homework.
- No classes on 4/26 (Wed).

