COSE312: Compilers

Lecture 1 — Overview of Compilers

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 1/15

What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target

language”).

source program
—

Compiler

target program
e ———

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 2 /15

What is Compiler?

Software systems that translate a program written in one language

(“source language”) into a program written in another language (“target
language”).

source program
—

) target program
Compiler |——

Typically,

@ the source language is a high-level language, e.g., C , and

o the target language is a machine language, e.g., x86.

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017 2 /15

What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target

language”).

source program

—_—

Typically,

Compiler

target program

—_—

@ the source language is a high-level language, e.g., C , and

o the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

source program
——

Compiler

target program
R ——

Interpreter

Hakjoo Oh COSE312 2017 Spring, Lecture 1

output
—_—

March 7, 2017

2/15

A Fundamental Requirement

The compiler must preserve the meaning of the source program.

»| Compiler
source program
output of —
source program —
Hakjoo Oh COSE312 2017 Spring, Lecture 1

n

target program g

output of
target program

March 7, 2017

3/15

Structure of Modern Compilers

source

\ 4

Front End

program

IR
|

Middle End

>

Back End

target

program'

@ The front-end understands the source program and translates it to an
intermediate representation (IR).

@ The middle-end takes a program in IR and optimizes it in terms of
efficiency, energy consumption, and so on.

@ The back-end transforms the IR program into machine-code.

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

4/15

Front End

token streams

syntax tree

syntax tree

character | Lexical

“|Analyzer

stream

Syntax
Analyzer

Semantic

—>
Analyzer

IR
Translator

v

@ The lexical analyzer transforms the character stream into a stream of

tokens.

@ The syntax analyzer transforms the stream of tokens into a syntax

tree.

@ The semantic analyzer checks if the program is semantically

well-formed.

@ The IR translator translates the syntax tree into IR.

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

5/15

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

token stream
—

character stream
_—

Lexical
Analyzer

Lof or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 /15

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream
_—

Lexical
Analyzer

token stream
—

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

Lof or relating to words or the vocabulary of a language as distinguished from its

grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017

6/15

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

character stream Lexical token stream
e -
Analyzer

ex) The lexical analyzer transform the character stream
pos = init + rate * 10

into a sequence of /exemes:

pOS , =" “init”, + , “rate”v u*n, ulon

Lof or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 /15

Lexical' Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

token stream
—

character stream
_—

Lexical
Analyzer

ex) The lexical analyzer transform the character stream
pos = init + rate * 10
into a sequence of /exemes:
“pOS”, “=”, “init”, “+”, “rate”, “*”, “10"

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

Lof or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 /15

Syntax? Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

token stream
————

syntax tree

Syntax
—

Analyzer

2the way in which words are put together to form phrases, clauses, or sentences

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 7 /15

Syntax® Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

token stream
B —

Syntax
Analyzer

syntax tree
—

ex) the parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

/:\

(ID,pos)

(ID,init)

2the way in which words are put together to form phrases, clauses, or sentences

+

PN

/*\

(ID,rate)

(NUM,10)

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

7/15

Semantic Analyzer

A semantic analyzer detects semantically ill-formed programs:

Semantic
Analyzer

prog.c

ex) Type errors:
int x = 1;
string y = "hello";
int z = x + y;
Other semantic errors:
@ array out of bounds
@ null-dereference
o divide-by-zero
° ..
March 7, 2017 8/ 15

16 static char *curfinal = "HDACB FE";

18 keysym = read_from_input (;

20 if ((((KeySym)(keysym) >= OxFF91) && ((KeySym)(keysym) <= @xFF94)))
{

22 unparseputc((char)(Ckeysym-0xFF91 +'P'), pty);
23 key = 1;

24 }

25 else if (Ckeysym >= 0)

{
27 if (keysym < 16)
28 {
29 if (read_from_input())
30 {
31 if (keysym >= 10) return;
32 curfinal[keysym] = 1;
33 }
34 else

{
36 curfinal[keysym] = 2;
37 3

}
39 if (keysym < 10)
{

41 unparseputc(curfinal[keysym], pty);
42 }
43 }

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 9 /15

Key Technology: Static Program Analysis

@ Predict program behavior statically and automatically
» static: by analyzing program text, before run/ship/embed
» automatic: sw is analyzed by sw (“static analyzer")
@ Applications
bug-finding: e.g., runtime failures of programs
security: e.g., is this app malicious or benign?
verification: e.g., does the program meet its specification?
optimization: e.g., automatic parallelization

vV vy VvYyy

@ Being widely used in sw industry

@ facebook. Google a’

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017

10 / 15

IR Translator

syntax tree
—_—)

IR
Translator

Intermediate Representation:

o lower-level than the source language

@ higher-level than the target language

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017

11/15

IR Translator

syntax tree
—_—)

IR
Translator

Intermediate Representation:

o lower-level than the source language

@ higher-level than the target language

ex) translate the syntax tree into three-address code:

tl = 10
t2 = rate * ti
t3 = init + t2

pos = t3
Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017

11/15

Optimizer

Transform IR to have better performance:

Optimizerl j=» IR - IR —»] Optimizer n >

v

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 12 /15

Optimizer

Transform IR to have better performance:

v

Optimizerl = IR

IR —»| Optimizer n

v

ex)
t1 = 10 t1 = 10
Z t2 = rate * 10 t2 = rate * 10
t2 = rate * tl t2 = rate x 10 t3 = init + t2 pos = init + t2
t3 = init + t2 t3 = init + t2 pos = t3
pos = t3 pos = t3
original IR final IR

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

Back End

Generate the target machine code:

IR
—_—

ex) from the IR

t2 = rate * 10
pos = init + t2

generate the machine code

LOAD R2, rate
MUL R2, R2, #10
LOAD R1, init
ADD R1, R1, R2
STORE pos, R1

Back End

target program
—

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

13 /15

Summary

A modern compiler consists of three phases:

source

program

Front End

IR
|

Middle End

>

Back End

target

program

@ Front end understands the syntax and semantics of source program.

@ Middle end improves the efficiency of the program.

@ Back end generates the target program.

Hakjoo Oh COSE312 2017 Spring, Lecture 1

March 7, 2017

14 /15

cf) A General View of Compilers

@ Compilers can be seen as a code synthesizer that transforms specification
into implementation.

» specification: high-level impl, logics, examples, natural languages, etc
» implementation: low-level impl, high-level impl, algorithm design, etc

@ e.g., specification: reverse(12) = 21, reverse(123) = 321

reverse (n) { reverse (n) {
r := 0; r := 0;
while () { while (n > 0]){
x :=n % 10;
* r := r % 10;
r :=r + X;
n :=n / 10;
}i }i
return r; return r;

} }

@ See our recent paper:
Synthesizing Imperative Programs for Introductory Programming
Assignments. https://arxiv.org/abs/1702.06334

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 15 / 15

