
COSE312: Compilers

Lecture 1 — Overview of Compilers

Hakjoo Oh
2017 Spring

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 1 / 15



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 2 / 15



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 2 / 15



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 2 / 15



A Fundamental Requirement

The compiler must preserve the meaning of the source program.

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 3 / 15



Structure of Modern Compilers

The front-end understands the source program and translates it to an
intermediate representation (IR).

The middle-end takes a program in IR and optimizes it in terms of
efficiency, energy consumption, and so on.

The back-end transforms the IR program into machine-code.

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 4 / 15



Front End

The lexical analyzer transforms the character stream into a stream of
tokens.

The syntax analyzer transforms the stream of tokens into a syntax
tree.

The semantic analyzer checks if the program is semantically
well-formed.

The IR translator translates the syntax tree into IR.

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 5 / 15



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 / 15



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 / 15



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 / 15



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 6 / 15



Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

ex) the parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

2the way in which words are put together to form phrases, clauses, or sentences
Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 7 / 15



Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

ex) the parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

2the way in which words are put together to form phrases, clauses, or sentences
Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 7 / 15



Semantic Analyzer

A semantic analyzer detects semantically ill-formed programs:

ex) Type errors:

int x = 1;

string y = "hello";

int z = x + y;

Other semantic errors:

array out of bounds

null-dereference

divide-by-zero

...
Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 8 / 15



Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 9 / 15



Key Technology: Static Program Analysis

Predict program behavior statically and automatically
I static: by analyzing program text, before run/ship/embed
I automatic: sw is analyzed by sw (“static analyzer”)

Applications
I bug-finding: e.g., runtime failures of programs
I security: e.g., is this app malicious or benign?
I verification: e.g., does the program meet its specification?
I optimization: e.g., automatic parallelization

Being widely used in sw industry

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 10 / 15



IR Translator

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) translate the syntax tree into three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 11 / 15



IR Translator

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) translate the syntax tree into three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 11 / 15



Optimizer

Transform IR to have better performance:

ex)

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 12 / 15



Optimizer

Transform IR to have better performance:

ex)

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 12 / 15



Back End

Generate the target machine code:

ex) from the IR

t2 = rate * 10

pos = init + t2

generate the machine code

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 13 / 15



Summary

A modern compiler consists of three phases:

Front end understands the syntax and semantics of source program.

Middle end improves the efficiency of the program.

Back end generates the target program.

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 14 / 15



cf) A General View of Compilers

Compilers can be seen as a code synthesizer that transforms specification
into implementation.

I specification: high-level impl, logics, examples, natural languages, etc
I implementation: low-level impl, high-level impl, algorithm design, etc

e.g., specification: reverse(12) = 21, reverse(123) = 321

See our recent paper:
Synthesizing Imperative Programs for Introductory Programming
Assignments. https://arxiv.org/abs/1702.06334

Hakjoo Oh COSE312 2017 Spring, Lecture 1 March 7, 2017 15 / 15


