
Mid-term Exam
COSE312 Compilers, Fall 2015

Instructor: Hakjoo Oh

Problem 1 Consider the following subset of regular ex-
pressions:

R→ ∅ | ε | a ∈ Σ | R+
1 | R1?

The semantics of the language is defined by a function L as
follows:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}

L(R+
1) = (L(R1))+ =

⋃
i≥1(L(R1))i

L(R1?) = L(R1) ∪ {ε}

Define Thomson’s construction (i.e., “compilation” from
regular expressions to NFAs) for the above language.

Problem 2 Consider the expression grammar:

E → T E′

E′ → + T E′ | ε
T → F T ′

T ′ → ∗ F T ′ | ε
F → (E) | id

The FIRST and FOLLOW sets are given:

• FIRST (F) = FIRST (T) = FIRST (E) = {(, id}.
• FIRST (E′) = {+, ε}.
• FIRST (T ′) = {∗, ε}.
• FOLLOW (E) = FOLLOW (E′) = {), $}.
• FOLLOW (T) = FOLLOW (T ′) = {+,), $}.
• FOLLOW (F) = {+, ∗,), $}.

The predictive parsing table is constructed as follows:

id + ∗ () $
E E → T E′ E → T E′

E′ (1) (2) E′ → ε
T T → F T ′ T → F T ′

T ′ (3) (4) (5) T ′ → ε
F F → id F → (E)

Find the production rules for (1)–(5).

Problem 3 Consider the expression grammar:

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

and its bottom-up parsing table:

id + ∗ () $ E T F

0 s5 s4 g1 g2 g3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 g8 g2 g3
5 r6 r6 r6 r6
6 s5 s4 g9 g3
7 s5 s4 g10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Complete the following parsing sequence for string id ∗ id:

Stack Symbols Input Action

0 id ∗ id$ shift to 5
0 5 id ∗id$ reduce by 6 (F → id)

Problem 4 Consider the following high-level imperative
language C:

C → skip

| x = E
| while B C
| C1;C2

E → n | x | E1 + E2

B → true | false | E1 < E2

and a low-level language T :

T → LabeledInstruction∗

LabeledInstruction → Label × Instruction
Instruction → skip

| x = y bop z
| x = y
| x = n
| goto L
| if x goto L

bop → + | <

The semantics of T should be clear from what we discussed
in class.

Define a translator

trans : C → T

that takes a program in C and converts it to a semantically
equivalent T program.

transe(n) = (t, [t = n])
transe(x) = (t, [t = x])

transe(E1 + E2) = let (t1, code1) = transe(E1)
let (t2, code2) = transe(E2)
in (t3, code1@code2@[t3 = t1 + t2])

transb(true) = (t, [t = 1])
transb(false) = (t, [t = 0])

transb(E1 < E2) = let (t1, code1) = transe(E1)
let (t2, code2) = transe(E2)
in (t3, code1@code2@[t3 = t1 < t2])

trans(skip) = [skip]
trans(x = E) = let (t1, code1) = transe(E)

in code1@[x = t1]
trans(while E C) = let (t1, code1) = transe(E)

in codeb = trans(C)
[(le, skip)]@

code1@
[if t1 goto lb]@
[goto lx]

[(lb, skip)]@
codeb@
[goto le]

[(lx, skip)]
trans(C1;C2) = trans(C1)@trans(C2)

Problem True/false questions:
1. A C compiler can be implemented in C.
2. The type of the function L in Problem 1 is L ∈ R→ 2Σ∗

.
3. The language of regular expressions (over some alphabet Σ)

can be expressed by a regular expression.
4. The language of HTML can be parsed by regular expressions.
5. Context-free grammars are regular expressions with recursion.
6. Regular expression c∗a(a | b | c)∗ describes the strings over

alphabet {a, b, c} where the first a precedes the first b.
7. There is a language that is context-free but not regular.
8. The ε-closure of NFA states I is defined as the smallest set such

that
I ∪

⋃
s∈T

δ(s, ε) ⊆ T

9. fix (λX.((X − {1, 2, 3}) ∪ {1})) = {1}.
10. Every inductively defined object has an equivalent fixed point

definition.
11. The following language is in LR(k) for some k.

S → i E t S S′ | a
S′ → e S | ε
E → b

12. Every bottom-up parser constructs a parse tree following the
rightmost derivation in reverse.

13. In bottom-up parsing, a handle is always found at the leftmost
substring of a right sentential form.

14. If a context-free grammar is unambiguous, every right-sentential
form of the grammar has exactly one handle.

15. The following language is in LL(1):

E → E + T
E → T

16. There is one-to-one relationship between parse trees and deriva-
tions.

17. An ambiguous grammar is one that produces more than one
rightmost derivation for the same sentence.

18. Consider the expression grammar:

E → E + E | E ∗ E | (E) | id

The SLR parsing for string id+id∗id encounters the following
shift/reduce conflict:

Stack Input Action
E + E ∗id shift or reduce

Assuming that ∗ takes precedence over +, the correct action
here is to take the reduce action.

19. Automatic translations between programming languages are
always done recursively on the structure of the source language.

20. In static single-assignment form, a variable definition (e.g.,
x = 1) can be executed many times at runtime.

