Mid-term Exam
 COSE312 Compilers, Fall 2015

Instructor: Hakjoo Oh

Problem 1 Consider the following subset of regular expressions:

$$
R \rightarrow \emptyset|\epsilon| a \in \Sigma\left|R_{1}^{+}\right| R_{1} ?
$$

The semantics of the language is defined by a function L as follows:

$$
\begin{aligned}
L(\emptyset) & =\emptyset \\
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L\left(R_{1}^{+}\right) & =\left(L\left(R_{1}\right)\right)^{+}=\bigcup_{i \geq 1}\left(L\left(R_{1}\right)\right)^{i} \\
L\left(R_{1} ?\right) & =L\left(R_{1}\right) \cup\{\epsilon\}
\end{aligned}
$$

Define Thomson's construction (i.e., "compilation" from regular expressions to NFAs) for the above language.

Problem 2 Consider the expression grammar:

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow * F T^{\prime} \mid \epsilon \\
& F \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

The FIRST and FOLLOW sets are given:

- $\operatorname{FIRST}(F)=\operatorname{FIRST}(T)=\operatorname{FIRST}(E)=\{(, \mathbf{i d}\}$.
- $\operatorname{FIRST}\left(E^{\prime}\right)=\{+, \epsilon\}$.
- $\operatorname{FIRST}\left(T^{\prime}\right)=\{*, \epsilon\}$.
- $\left.\operatorname{FOLLOW}(E)=F O L L O W\left(E^{\prime}\right)=\{), \$\right\}$.
- $\left.\operatorname{FOLLOW}(T)=F O L L O W\left(T^{\prime}\right)=\{+),, \$\right\}$.
- $F O L L O W(F)=\{+, *),, \$\}$.

The predictive parsing table is constructed as follows:

	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$			$E \rightarrow T E^{\prime}$		
E^{\prime}		(1)			(2)	$E^{\prime} \rightarrow \epsilon$
T	$T \rightarrow F T^{\prime}$			$T \rightarrow F T^{\prime}$		
T^{\prime}		(3)	(4)		(5)	$T^{\prime} \rightarrow \epsilon$
F	$F \rightarrow \mathbf{i d}$			$F \rightarrow(E)$		

Find the production rules for (1)-(5).

Problem 3 Consider the expression grammar:

$$
\begin{array}{llll}
(1) & E & \rightarrow & E+T \\
(2) & E & \rightarrow & T \\
(3) & T & \rightarrow & T * F \\
(4) & T & \rightarrow & F \\
(5) & F & \rightarrow & (E) \\
(6) & F & \rightarrow & \text { id }
\end{array}
$$

and its bottom-up parsing table:

	id	+	$*$	$($	$)$	$\$$	E	T	F
0	$s 5$			$s 4$			$g 1$	$g 2$	$g 3$
1		$s 6$				acc			
2		$r 2$	$s 7$		$r 2$	$r 2$			
3		$r 4$	$r 4$		$r 4$	$r 4$			
4	$s 5$			$s 4$			$g 8$	$g 2$	$g 3$
5		$r 6$	$r 6$		$r 6$	$r 6$			
6	$s 5$			$s 4$				$g 9$	$g 3$
7	$s 5$			$s 4$					$g 10$
8		$s 6$			$s 11$				
9		$r 1$	$s 7$		$r 1$	$r 1$			
10		$r 3$	$r 3$		$r 3$	$r 3$			
11		$r 5$	$r 5$		$r 5$	$r 5$			

Complete the following parsing sequence for string id $* \mathbf{i d}$:

Stack	Symbols	Input	Action
0		$\mathbf{i d} * \mathbf{i d} \$$	shift to 5
05	id	$* \mathbf{i d} \$$	reduce by $6(F \rightarrow \mathbf{i d})$

Problem 4 Consider the following high-level imperative language C :

$$
\begin{array}{rll}
C & \rightarrow & \text { skip } \\
& \mid & x=E \\
& \text { while } B C \\
& \mid & C_{1} ; C_{2} \\
E & \rightarrow & n|x| E_{1}+E_{2} \\
B & \rightarrow & \text { true } \mid \text { false } \mid E_{1}<E_{2}
\end{array}
$$

and a low-level language T :

$$
\begin{array}{rll}
T & \rightarrow & \text { LabeledInstruction* } \\
\text { LabeledInstruction } & \rightarrow & \text { Label } \times \text { Instruction } \\
\text { Instruction } & \rightarrow & \text { skip } \\
& \left|\begin{array}{l}
x=y \text { bop } z \\
\\
\\
\\
\\
\\
\text { bop } \\
\\
\end{array}\right| \begin{array}{l}
\text { if } x \text { goto } L \\
\text { if } \\
\text { if } \mid<
\end{array}
\end{array}
$$

The semantics of T should be clear from what we discussed in class.

Define a translator

$$
\text { trans : } C \rightarrow T
$$

that takes a program in C and converts it to a semantically equivalent T program.

$$
\begin{aligned}
& \operatorname{trans}_{e}(n)=(t,[t=n]) \\
& \operatorname{trans}_{e}(x)=(t,[t=x]) \\
& \operatorname{trans}_{e}\left(E_{1}+E_{2}\right)=\text { let }\left(t_{1}, \text { code }_{1}\right)=\operatorname{trans}_{e}\left(E_{1}\right) \\
& \text { let }\left(t_{2}, \text { code }_{2}\right)=\operatorname{trans}_{e}\left(E_{2}\right) \\
& \text { in (} \left.t_{3}, \text { code }_{1} @ \operatorname{code}_{2} @\left[t_{3}=t_{1}+t_{2}\right]\right) \\
& \operatorname{trans}_{b}(\text { true })=(t,[t=1]) \\
& \operatorname{trans}_{b}(\mathrm{false})=(t,[t=0]) \\
& \operatorname{trans}_{b}\left(E_{1}<E_{2}\right)=\text { let }\left(t_{1}, \text { code }_{1}\right)=\operatorname{trans}_{e}\left(E_{1}\right) \\
& \text { let }\left(t_{2}, \text { code }_{2}\right)=\operatorname{trans}_{e}\left(E_{2}\right) \\
& \text { in (} \left.t_{3}, \text { code }_{1} @ \text { code }_{2} @\left[t_{3}=t_{1}<t_{2}\right]\right) \\
& \text { trans(skip) }=\text { [skip] } \\
& \operatorname{trans}(x=E)=\text { let }\left(t_{1}, \operatorname{code}_{1}\right)=\operatorname{trans}_{e}(E) \\
& \text { in code } 1 @\left[x=t_{1}\right] \\
& \operatorname{trans}(\text { while } E C)=\text { let }\left(t_{1}, \text { code }_{1}\right)=\text { trans }_{e}(E) \\
& \text { in } \text { code }_{b}=\operatorname{trans}(C) \\
& {\left[\left(l_{e}, \text { skip }\right)\right] @} \\
& \text { code }{ }_{1} @ \\
& \text { [if } \left.t_{1} \text { goto } l_{b}\right] @ \\
& \text { [goto } l_{x} \text {] } \\
& {\left[\left(l_{b}, \text { skip }\right)\right] @} \\
& \text { code }{ }^{@} \text { @ } \\
& \text { [goto } l_{e} \text {] } \\
& {\left[\left(l_{x}, \text { skip }\right)\right]} \\
& \operatorname{trans}\left(C_{1} ; C_{2}\right)=\operatorname{trans}\left(C_{1}\right) @ \operatorname{trans}\left(C_{2}\right)
\end{aligned}
$$

Problem True/false questions:

1. A C compiler can be implemented in C.
2. The type of the function L in Problem 1 is $L \in R \rightarrow 2^{\Sigma^{*}}$.
3. The language of regular expressions (over some alphabet Σ) can be expressed by a regular expression.
4. The language of HTML can be parsed by regular expressions.
5. Context-free grammars are regular expressions with recursion.
6. Regular expression $c^{*} a(a|b| c)^{*}$ describes the strings over alphabet $\{a, b, c\}$ where the first a precedes the first b.
7. There is a language that is context-free but not regular.
8. The ϵ-closure of NFA states I is defined as the smallest set such that

$$
I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T
$$

9. $f x(\lambda X$. $((X-\{1,2,3\}) \cup\{1\}))=\{1\}$.
10. Every inductively defined object has an equivalent fixed point definition.
11. The following language is in $\operatorname{LR}(k)$ for some k.

$$
\begin{aligned}
S & \rightarrow i E t S S^{\prime} \mid a \\
S^{\prime} & \rightarrow e S \mid \epsilon \\
E & \rightarrow b
\end{aligned}
$$

12. Every bottom-up parser constructs a parse tree following the rightmost derivation in reverse.
13. In bottom-up parsing, a handle is always found at the leftmost substring of a right sentential form.
14. If a context-free grammar is unambiguous, every right-sentential form of the grammar has exactly one handle.
15. The following language is in $\operatorname{LL}(1)$:

$$
\begin{array}{lll}
E & \rightarrow & E+T \\
E & \rightarrow & T
\end{array}
$$

16. There is one-to-one relationship between parse trees and derivations.
17. An ambiguous grammar is one that produces more than one rightmost derivation for the same sentence.
18. Consider the expression grammar:

$$
E \rightarrow E+E|E * E|(E) \mid \text { id }
$$

The SLR parsing for string $\mathbf{i d}+\mathbf{i d} * \mathbf{i d}$ encounters the following shift/reduce conflict:

$$
\begin{array}{lrl}
\text { Stack } & \text { Input } & \text { Action } \\
\hline E+E & * \mathbf{i d} & \text { shift or reduce }
\end{array}
$$

Assuming that $*$ takes precedence over + , the correct action here is to take the reduce action.
19. Automatic translations between programming languages are always done recursively on the structure of the source language.
20. In static single-assignment form, a variable definition (e.g., $x=1$) can be executed many times at runtime.

