Mid-term Exam
COSE312 Compilers, Fall 2015

Instructor: Hakjoo Oh

Problem 1 Consider the following subset of regular ex-
pressions:

R—0|e|laeX | R | R?

The semantics of the language is defined by a function L as
follows:

L) = 0

L(e) = {g

L(a) = {a} |
L(R{) = (L(R1)T = Uiz (L(R1))'
L(R?) = L(Ri)U{e}

Define Thomson’s construction (i.e., “compilation” from
regular expressions to NFAs) for the above language.

Problem 2 Consider the expression grammar:
E - TF
E — +TFE |e
T - FT'
T — «FT'|e
F — (E)]|id
The FIRST and FOLLOW sets are given:
e FIRST(F) = FIRST(T) = FIRST(E) = {(,id}.
o FIRST(E’) = {+,¢€}.
o FIRST(T') = {*,¢€}.
e FOLLOW (E) = FOLLOW (E') = {), $}.
e FOLLOW (T) = FOLLOW(T") = {+,), $}.
e FOLLOW (F) = {+,%,),$}.

The predictive parsing table is constructed as follows:

—_

id + | x () $
E|E—>TEFE E—TE
£ 0 Q) [E e
T | T—>FT T—FT
T’ 3@ G| T —e
F| Foid F = (B)

Find the production rules for (1)—(5).

Problem 3 Consider the expression grammar:

E+T
T
TxF
F

(E)
id

SoeuRE
NN EE
4L i1

(
(
(
(
(
(

and its bottom-up parsing table:

id + =) $ E T F
0 85 s4 gl g2 g3
1 s6 acc
2 r2 s7 r2 r2
3 rd rd rd rd
4 sH s4 g8 g2 g3
5 r6 76 r6 16
6 sH s4 g9 g3
7 sb s4 gl0
8 s6 sl1
9 rl s7 rl rl
10 r3d r3 r3d r3
11 r5 Td r5 rd

Complete the following parsing sequence for string id * id:

Stack ‘ Symbols ‘ Input ‘ Action
0 id x id$ shift to 5
05 id *1d$ reduce by 6 (F' — id)

Problem 4 Consider the following high-level imperative

language C:
C skip

z=F

while B C

C1;Cy

n | x | E1 + E2

true | false | E; < B,

li—

E
B
and a low-level language T

T — LabeledInstruction™
LabeledInstruction — Label x Instruction
Instruction — skip
| z=ybopz
| x=y
| z=n
| gotolL
| if x goto L
bop — +|<
The semantics of 1" should be clear from what we discussed
in class.
Define a translator

trans : C — T

that takes a program in C' and converts it to a semantically
equivalent 7" program.

trans.(n) (t, [t =n])
transe(xz) = (¢, [t =z])
trans.(E1 + E2) let (t1, code1) = transe(E1)
let (t2, codes) = transe(E>)
in (tjg, (,'Od(ﬁ1 @(Iodﬁg@[tg =1t + tQD

transy(true) = (¢, [t =1])
transy(false) = (¢, [t =0])
transy(Ey < E2) = let (t1, coder) = trans.(FE1)

let (t2, codes) = transe(F2)
in (ts, code1@code2Q[ts = t1 < t2])

trans(skip)
trans(z = E)

[skip]
let (t1, coder) = trans.(E)
in code1Q[z = t1]
trans(while E C') = let(t1, code1) = trans.(E)
in codey, = trans(C)
(e, skip)]@
code, @
[if t1 goto [,]@
[goto I4]
[(lb, Skip)}@
code,@
[goto lc]
(1., skip)]
trans(Cy; C2) = trans(Cy)@Qtrans(Cs)

Problem True/false questions:

1

. A C compiler can be implemented in C.
2.
3.

The type of the function L in Problem 1is L € R — 25",

The language of regular expressions (over some alphabet)
can be expressed by a regular expression.

4. The language of HTML can be parsed by regular expressions.

5. Context-free grammars are regular expressions with recursion.

6. Regular expression c*a(a | b | ¢)* describes the strings over

alphabet {a, b, ¢} where the first a precedes the first b.

7. There is a language that is context-free but not regular.

. The e-closure of NFA states [is defined as the smallest set such

that
1ulJés,ecr

seT

9. fitOX.((X — {1,2,3}) U {1})) = {1}.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Every inductively defined object has an equivalent fixed point
definition.

The following language is in LR(k) for some k.

S — iEtSS'|a

S — eS]|e

E — b
Every bottom-up parser constructs a parse tree following the
rightmost derivation in reverse.

In bottom-up parsing, a handle is always found at the leftmost
substring of a right sentential form.

If a context-free grammar is unambiguous, every right-sentential
form of the grammar has exactly one handle.

The following language is in LL(1):

E — E+4+T

E - T
There is one-to-one relationship between parse trees and deriva-
tions.

An ambiguous grammar is one that produces more than one
rightmost derivation for the same sentence.

Consider the expression grammar:
E—-E+E|ExE|(F)|id

The SLR parsing for string id+id*id encounters the following

shift/reduce conflict:

Stack Input Action
E+FE *xid shift or reduce

Assuming that = takes precedence over +, the correct action
here is to take the reduce action.

Automatic translations between programming languages are
always done recursively on the structure of the source language.
In static single-assignment form, a variable definition (e.g.,
x = 1) can be executed many times at runtime.

