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rithm is unlikely to return a program that does an n-way case split
on its input and returns bi whenever the input is equal to ai. Instead,
the algorithm tries to “generalize” the examples into a program that
makes minimal use of conditional branches.

Although the synthesis algorithm’s job is fundamentally diffi-
cult due to the combinatorial search space of possible programs,
our algorithm addresses this challenge using a combination of three
technical ideas: (1) type-aware inductive generalization, (2) the use
of deduction to guide the solution of subproblems; and (3) best-first
enumerative search.

Inductive generalization Rather than blindly searching for a tar-
get program, our method generalizes the user-provided examples
into a set of hypotheses about this program. A hypothesis is ei-
ther a concrete program or a “skeleton” that contains placeholders
(“holes”) for unknown programs. For instance, a hypothesis h for a
program e might be of the form �x. map f⇤ x where f⇤ stands for
an unknown program. To synthesize a program from a hypothesis,
we must substitute holes such as f⇤ by concrete programs.

Our algorithm generates hypotheses in a type-aware manner:
We infer a type from the input-output examples and only generate
hypotheses that can be concretized to programs of this type. For
instance, our algorithm generates the hypothesis �x. map f⇤ x only
if all input-output examples are of type list[⌧ ] ! list[⌧ ]. This
strategy often leads to significant pruning of the search space.

Deduction Once our algorithm generates a hypothesis h in the
form of a program skeleton, we must solve one or more subprob-
lems in order to synthesize the unknown functions that appear in
h. For this purpose, our algorithm uses automated deduction to ef-
ficiently find a solution to the subproblems. In particular, we use
deductive reasoning in two ways:

• Refutation. First, deduction is used to quickly refute certain
hypotheses. For instance, consider an example of the form
[1, 1] 7! [2, 3] and the hypothesis h ⌘ �x. map f⇤ x. Our
deduction engine infers that this hypothesis h cannot be appro-
priate in this case, as no function maps the number 1 in the
input list to two distinct numbers 2 and 3 in the output list.

• Example inference. Second, deduction is used to generate new
examples that guide the search for missing functions. Consider
again the hypothesis �x. map f⇤ x and the example [1, 2] 7!
[3, 4]. In this case, the deduction engine uses properties of the
map combinator to infer two examples for f⇤: 1 7! 3 and
2 7! 4. To find f⇤, we invoke the synthesis algorithm on these
examples.

Best-first enumerative search Whether we are solving the top-
level synthesis problem or a subproblem, we will eventually get
to a point where inductive generalization and deduction no longer
help us. In this case, our method falls back on enumerative search.
In particular, we explore the space of all expressions that fit our
hypothesis and check whether the generated expressions are con-
sistent with the provided input-output examples. Also, we may find
that a specific hypothesis cannot be realized into a program that fits
the examples. In this case, our algorithm uses enumerative search
to pick a new hypothesis.

Using the principle of Occam’s razor, our search algorithm pri-
oritizes simpler expressions and hypotheses. Specifically, the algo-
rithm maintains a “frontier” of candidate expressions and hypothe-
ses that need to be explored next and, at each point in the search,
picks the least-cost item from this frontier. We show that this search
strategy allows us synthesize the simplest program that fits the ex-
amples.

Results We have implemented our algorithm in a tool called �2,
and we empirically demonstrate that our technical insights can be

combined into a scalable algorithm1. The benchmarks for our ex-
periments include over 40 synthesis problems involving lists, trees,
and nested data structures such as lists of lists and trees of lists.
We show that �2 can successfully solve these benchmarks, typi-
cally within a few seconds. The programs that �2 synthesizes can
be complex but also elegant. For example, �2 is able to synthe-
size a program that is believed to be the world’s earliest functional
pearl [7].

Organization The paper is organized as follows. In Section 2, we
present three motivating examples for our approach. After formal-
izing the problem in Section 3, we present our synthesis algorithm
in Section 4. An evaluation is presented in Section 5, and related
work is discussed in Section 6. Finally, we conclude with some
discussion in Section 7.

2. Motivating examples
In this section, we illustrate our method’s capabilities using three
examples.

2.1 Manipulating lists of lists
Consider a high-school teacher who wants to modify a collection
of student scores. These scores are represented as a list x =

[l1, . . . , ln] of lists, where each list li contains the i-th student’s
scores. The teacher’s goal is to write a function dropmins that
transforms x into a new list where each student’s lowest score is
dropped. For instance, we require that

dropmins [[1,3,5],[5, 3, 2]] = [3, 5], [5, 3].

Our �2 system can synthesize the following implementation of
this function in 114.65 seconds:

dropmins x = map f x

where f y = filter g y

where g z = foldl h False y

where h t w = t || (w < z)

Here, foldl, map, and filter refer respectively to the standard
left-fold, map, and filter operators 2.

Note the complex interplay between scoping and higher-order
functions in this example. For example, the occurrence of z in line
4 is bound by the enclosing definition of g, and the occurrence of y
in line 3 is bound by the enclosing definition of f.

The input-output examples used in the synthesis task are as
follows.

[] 7! []

[[1]] 7! [[]]

[[1, 3, 5], [5, 3, 2]] 7! [[3, 5], [5, 3]]

[[8, 4, 7, 2], [4, 6, 2, 9], [3, 4, 1, 0]] 7!
[[8, 4, 7] [4, 6, 9], [3, 4, 1]]

2.2 Transforming trees
Consider a user who wants to write a program to mine family trees.
A node in such a tree represents a person; the node is annotated
with a set of attributes including the year when the person was
born. Given a family tree, the user’s goal is to generate a list of
persons in the family who were born between 1800 and 1820.

Suppose nodes of a family tree are labeled by pairs (v, by),
where by is the birth year of a particular person and v represents
the remaining attributes of that person. Given such a family tree,
our synthesis task is to produce a program that generates a list of

1 The name �2 stands for “Lambda Learner”.
2 While �2 generates its outputs in a �-calculus, we use a Haskell-like
notation for readability.

(from “Synthesizing Data Structure Transformations from Input-Output Examples”.  PLDI 2015)
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Figure 1: SmartSynth’s system architecture.

vant components (i.e. script constructs) and a partial set of dataflow
relations among the components, and (3) techniques inspired by the
program synthesis community to complete the partial set of dataflow
relations via type-based program synthesis [15,27,32] and construct
the desired scripts via reverse parsing [2].

Indeed, we combine and refine recent advances in both the NLP
and program synthesis areas. A recent, emerging trend in NLP is se-
mantic understanding of natural languages. There have been recent,
although limited, successes in translating structured English into
database queries [4] and translating NL statements into logic in spe-
cific domains [9, 20]. As for program synthesis, the traditional goal
has been to discover new or complicated algorithms from complete
logical specifications. There is recent, renewed interest in this area
of synthesis because of (1) interesting applications (such as end-user
programming [14] and intelligent tutoring systems [13]), and (2)
the ability to deal with under-specifications (such as examples [14],
and a set of APIs or keywords [15, 24]). Our combination of NLP
and program synthesis is synergistic since NLP is used to “partially
understand” natural language and program synthesis is then used to
refine this understanding and generate the intended script.

Figure 1 illustrates SmartSynth’s process of synthesizing scripts.
The user communicates her intent via natural language (Step 1).
The “Component Discovery” box contains two algorithms that are
inspired by the NLP area: (i) a mapping algorithm that maps the
description into script components such as APIs and literals (Step 3),
and (ii) an algorithm that asks the user to refine parts of the de-
scription that SmartSynth does not understand (Step 2). The “Script
Discovery” box first uses an NLP-based algorithm to detect dataflow
relations among the identified components. If these relations do
not fully specify the dataflow relationships between components,
SmartSynth invokes our algorithm (inspired by type-based synthe-
sis) to complete the missing dataflow relations. If there are multiple
equally high-ranked relations, SmartSynth initiates an interactive
conversation with the user to resolve the ambiguities (Step 5). As
the final step, it constructs the intended script from the identified
components and relations using an algorithm akin to reverse parsing.

An interesting feature of SmartSynth is the NLP-Synthesis feed-
back loop in Steps 3-4. Although our NLP algorithm has its own
mapping feature set to perform component mapping, it might not
precisely capture the mapping in some cases, due to irregularities
of natural language. SmartSynth uses program synthesis technique
to gain confidence about the quality of the generated script and as

Figure 2: A visual program for Example 1 written in AppInventor.

another metric for the quality of NLP mapping. In particular, Smart-
Synth repeatedly requests the NLP-based algorithm for the next
likely interpretation of the description, if the current interpretation
is deemed unlikely (i.e., the interpretation does not translate to a
high-confidence script).

Contributions We make the following contributions:

• We introduce an automation language SmartScript that is
expressive enough to represent a wide variety of automation
scripts discussed on online forums, while at the same time
restrictive enough to enable efficient search over the program
space (Section 3).

• We present an algorithm for generating likely SmartScript
scripts from natural language descriptions (Section 4). Our
algorithm involves three key technical steps: (1) generation of
script components, (2) generation of dataflow relations among
those components, and (3) constructing the script from the
components and dataflow relations. The first and second steps
leverage techniques from NLP, while the second and third
steps leverage techniques from program synthesis.

• We have implemented our technique and evaluated it on 50
different tasks collected from smartphone help forums. Our
results show that SmartSynth is effective — it can generate
the intended scripts in real time for over 90% of the 640
NL descriptions collected via a user study (Section 5). We
have also extended SmartSynth to TouchDevelop, which has
a much larger grammar and API set, with similar positive
results. A video demo of the extended system is available at
http://www.cs.ucdavis.edu/~su/smartsynth.mp4.

Paper Organization The rest of the paper is structured as follows.
We first use a concrete example to motivate and illustrate Smart-
Synth (Section 2). Section 3 introduces our DSL SmartScript and
defines the notion of script components. Sections 4 presents three
key steps of SmartSynth— mapping NL descriptions to compo-
nents, detecting dataflow relations among the identified components,
and synthesizing scripts from these components and relations. We
then present our detailed evaluation of SmartSynth (Section 5). We
discuss related work in Section 6 and conclude in Section 7.

2. EXAMPLE
We motivate our system via the following running example, taken

from a help forum for Tasker [7].

EXAMPLE 1. The user wants to create a script to do the follow-
ing when she receives an SMS while driving: (1) read the content

(from “SmartSynth: Synthesizing Smartphone Automation Scripts from Natural Languages”.  MobiSys13)
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Figure 3: The graph showing all possible dataflow relations among
components identified by the Component Discovery algorithms.

of the message and (2) send a message “I’m driving” to the sender.
Since the user always connects her car’s bluetooth to the phone
when she is in the car, she uses this fact to denote that she is driv-
ing1. One possible description of this script is:

“When I receive a new SMS, if the phone is connected
to my car’s bluetooth, it reads out loud the message
content and replies the sender “I’m driving.”.”

Users of both conventional and visual programming systems have
to deal with all the low-level details and make several decisions,
often unintuitive to them, during the process of creating a new pro-
gram. In contrast, users of SmartSynth only need to give the system
their problem description in NL, and interact with it, if necessary,
in natural language. Below we compare traditional programming
systems with SmartSynth using our example.

Identifying Components Users of conventional and visual pro-
gramming systems have to conceptualize their ideas into script
components (i.e., script constructs such as APIs), potentially under
several refinement steps [40]. This is a non-trivial task as it assumes
that users should understand all script constructs’ specifications.
As shown in Figure 2, users of AppInventor have to conceptualize
and identify various components while transforming the idea in
Example 1 into a running script.

In comparison, SmartSynth automatically decomposes the de-
scription into disjoint text chunks and matches each chunk to its
supported components (details in Section 4.1). For the description
in Example 1, SmartSynth is able to decompose and match the de-
scription to the components shown in Table 1. When any chunk of
the description cannot be mapped to a component, SmartSynth will
ask the user to refine the chunk.

However, as is often the case in NLP, mapping a chunk to compo-
nents can be ambiguous. For example, we can map “if the phone is
connected to” to any of the three candidates shown in Table 1. Simi-
larly, we can map “replies” to either SendMessage or SendEmail.
One can look at API arguments to resolve these ambiguities. In the
first case, since the argument is a bluetooth device, it is very likely
that the mapping component is IsConnectedToBTDevice. But
this approach does not work as well for the second case, where the
ambiguity can only be resolved by considering the global context
that may indicate receipt or sending of an SMS.

SmartSynth takes a different approach. Instead of manually
encoding many disambiguation rules, it relies on the techniques
1 In fact, this is a clever workaround to avoid using the GPS sensor,
which drains the battery power very quickly.

Description Possible Mappings
When I receive a

MessageReceivednew SMS

if the phone is
connected to

IsConnectedToBTDevice
IsConnectedToWifiNetwork
IsConnectedToDataService

my car’s bluetooth Car_BT
reads out loud Speak
the message content MessageReceived.TextO

replies SendMessage
SendEmail

the sender MessageReceived.NumberO
“I’m driving” "I’m driving"

Table 1: Possible mappings from text chunks to components in Ex. 1.
TextO and NumberO are return values of MessageReceived.

inspired by type-based synthesis to automatically disambiguate
mapping candidates. Specifically, from each mapping candidate
that needs to be resolved, SmartSynth generates a script and as-
signs it a score indicating how likely the script is. The best map-
ping is associated with the script that has the highest score. In
Example 1, SmartSynth is able to select the right mapping set
(IsConnectedToBTDevice, SendMessage and the others) because
together they form the highest ranked script.

Synthesizing Scripts Besides identifying all necessary components,
users of conventional systems also need to understand the compo-
nents’ low-level details in order to assemble them meaningfully.

To create the script in Figure 2, the users must understand that
MessageReceived is an event and returns a phone number and a
message content, which may be stored in two temporary variables.
They need to understand that IsDevicePaired is the guard of the
conditional and it must be linked with the car’s bluetooth. Also, the
APIs Speak and SendMessage must be configured with arguments
of types Text and Number & Text respectively. Finally, the users
need to pass the temporary variables/literals to those APIs and
arrange them in the correct order.

In contrast, users of SmartSynth are not required to understand
those low-level details because the system knows the signatures
of all those APIs. The challenge is to generate additional script
constructs such as loops, conditionals and assignments to combine
these components together into a script reflecting the user’s intent.
SmartSynth solves this challenge in the following steps (details in
Section 4.2). First, it builds a special data structure that represents
all possible dataflow relations among the components. We call each
of them a (dataflow) relation. Figure 3 shows the data structure
for the right component mapping set. An edge in this figure repre-
sents a relation, which specifies a possible dataflow from a value
(source) to an API’s parameter (sink). The value from a source
might be assigned to multiple sinks (if they have the same type),
and a sink might receive a value from different sources (also of the
same type). For example, the sink denoting the message content
in SendMessage can be assigned to the argument from either the
received message of MessageReceived, or the string literal “I’m
driving” because they have the same type String.

Next, SmartSynth uses classic NLP techniques [19] to detect
likely relations from the NL description. These relations must be
derived from the set of all possible relations embedded in the graph.
Table 2 shows the relations that SmartSynth has detected from the
description. A row in this table represents a relation defining which
source is assigned to a sink. For example, the last row states that



Example 2

Figure 3: The graph showing all possible dataflow relations among
components identified by the Component Discovery algorithms.
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Return value or Literal API Parameter

Car_BT
IsConnectedToBT-
Device.BluetoothI

MessageReceived.TextO ReadText.TextI
MessageReceived.NumberO SendMessage.NumberI
"I’m driving" SendMessage.TextI

Table 2: Relations detected from Example 1’s description. Sub-
scripts I/O characterize the field of an API as a parameter or a
return value.

the message content to be sent by SendMessage is the string literal
“I’m driving”. SmartSynth generates and returns the final script to
the user if it is able to detect all necessary relations from the NL
description (Figure 4).

when (number, content) := MessageReceived()

if (IsConnectedToBTDevice(Car_BT) then
Speak(content);

SendMessage(number, "I’m driving");

Figure 4: The script for Example 1.

However, since users can give free-form descriptions, SmartSynth
may often detect only a subset of the necessary relations. In these
cases where the intent is under-specified, SmartSynth uses tech-
niques inspired by type-based synthesis to find the missing relations.
It performs searching over the dataflow graph for missing relations
and uses a special ranking scheme to prioritize more likely relations.
SmartSynth then uses these newly discovered relations to generate
the most likely script and returns it to the user.

As an example, suppose that the user had given a slightly different
description “. . . and send back. . . ” (instead of “. . . and replies the
sender. . . ”) and also suppose that SmartSynth does not model this
mapping and thus is unable to extract the third relation between
MessageReceived.NumberO and SendMessage.NumberI in Ta-
ble 2. Nonetheless, SmartSynth can discover this missing relation
and generate the same script as in Figure 4.

3. AUTOMATION SCRIPT LANGUAGE
In this paper, we use a scripting language SmartScript (Fig-

ure 5) with representative features of the current smartphone genera-
tion. Since SmartScript is an intermediate language, we can port it
to other mobile platforms via simple syntax-directed translation [2].

3.1 Language Features
We have designed SmartScript from an extensive study of the

scripts from various smartphone help forums. This design process is
an interesting exercise to balance the trade-offs between the expres-
siveness of SmartScript and the effectiveness of SmartSynth. The
restrictions that we place in SmartScript (event and conditionals
only appear at the top of the script) allow SmartSynth to perform
type-based synthesis more effectively under the uncertainties in NL
processing.

A script P in SmartScript represents a task that executes a se-
quence of actions under a certain condition. It has some parameters
I (which will be entered by users when the script runs) and may
be triggered by an event E. When the event occurs, it generates
some variables. The conversions T converts these variables into
new types that are used in the condition C. The condition is then
evaluated and if it holds, the main body M is executed.

Script P ::= I E T C M

Parameter I ::= input(i1, . . . , in) | ✏
Event E ::= (r1, . . . , rn) := when Event() | ✏

Conversions T ::= F1; . . . ;Fn;

Condition C ::= if (⇧1 ^ · · · ^⇧n) then
Body M ::= Stmt1; . . . ;Stmtn;

Conversion F ::= x := Convert(a)

Predicate ⇧ ::= Predicate(a1, . . . , an)

Stmt. Stmt ::= S

| foreach x 2 a

do S1; . . . ;Sn; od
Atom. Stmt. S ::= A | F

Action A ::= (r1, . . . , rn) := Action(a1, . . . , an)

Argument a ::= x | i | r | l

Figure 5: The syntax of automation language: x, i, r, l refer to a
temporary variable, an argument of the script, a return value, and
a literal, respectively. The essential components identified by the
NLP techniques are underlined.

We use a few examples, each of which contains an NL description
and the synthesized script, to illustrate our key language constructs.

Event and Conditional

EXAMPLE 2. [Phone Locator] When the phone receive a new
text message, reply with my current location if the message content
is “Secret code”.

when (number, text) := MessageReceived

if (text = "Secret code") then
text2 := LocationToString(CurrentLocation);

SendMessage(number, text2);

API Composition

EXAMPLE 3. [Picture Uploader] Take a picture, add to it the
current location and upload to Facebook.

pic := TakePhoto();

text := LocationToString(CurrentLocation);

pic2 := AddTextToPhoto(pic, text);

UploadPhotoToFacebook(pic2);

Loops

EXAMPLE 4. [Group Texting] Send my current location to 111-
1111 and 222-2222.

text := LocationToString(CurrentLocation);

foreach number in {111-1111, 222-2222} do
SendMessage(number, text);

od
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(from “How Can Automatic Feedback Help Students Construct Automata?”.  MobiSys13)

How Can Automatic Feedback Help Students Construct Automata? 9:7

Fig. 1. When solving DFA constructions, a student provides an attempt solution for the target language.
The student receives personalized feedback and keeps refining the solution until finding a correct one.

For example, a possible feedback for the first-attempt DFA in Figure 1 would be:

Your DFA is incorrect on the following set of strings: {s | ‘ba’ appears in s
more than twice.}

This feedback is a generalization of a particular counterexample—by presenting a
description of a set of incorrect strings, we hypothesize that students can think more
holistically about the behavior of their DFA. These hints again point out what is
wrong (type 2).

—Solution Syntactic Mistake: DFA has some structural errors. In this type of mistake,
the student DFA is syntactically close but not equal to a correct DFA. This means
that a small number of structural changes (e.g., changing a transition or adding or
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