
Overview of
Static Analysis Research @KU

Hakjoo Oh
Programming Research Laboratory 

Korea University

Motivation: Unsafe Softwares

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

Motivation: Unsafe Softwares

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

Motivation: Unsafe Softwares

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

Motivation: Unsafe Softwares

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

Motivation: Unsafe Softwares

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

Motivation: Unsafe Softwares

“1회 발사실패시 2500억 손실”

from http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

http://www.slideshare.net/ItrisAutomationSquare/risk-management-and-business-protection-with-coding-standardization-static-analyzer

The Fundamental Reason

• Will our engineered artifact behave as intended?

Current Technology for Safe SW

Manual, ad-hoc, postmortem:

code review, testing, simulation, debugging, etc

Technology for “Software MRI”

What is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

Our MissionWhat is Program Analysis?

Very broad topic, but generally speaking, automated analysis
of program behavior

Program analysis is about developing algorithms and tools
that can analyze other programs

prog.c

2 / 24

Example:

• Detect memory errors in C programs

• e.g., buffer-overrun, memory leak, null-dereference, etc

• Features (vs. testing)

• Full automation

• Find bugs early

• All bugs found (ensured by theory)

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

curfinal: buffer of size 10

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

curfinal: buffer of size 10

keysym: any integer

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

curfinal: buffer of size 10

keysym: any integer

keysym: [0,15]

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

 16 static char *curfinal = "HDACB FE";
 17
 18 keysym = read_from_input ();
 19
 20 if ((((KeySym)(keysym) >= 0xFF91) && ((KeySym)(keysym) <= 0xFF94)))
 21 {
 22 unparseputc((char)(keysym-0xFF91 +'P'), pty);
 23 key = 1;
 24 }
 25 else if (keysym >= 0)
 26 {
 27 if (keysym < 16)
 28 {
 29 if (read_from_input())
 30 {
 31 if (keysym >= 10) return;
 32 curfinal[keysym] = 1;
 33 }
 34 else
 35 {
 36 curfinal[keysym] = 2;
 37 }
 38 }
 39 if (keysym < 10)
 40 {
 41 unparseputc(curfinal[keysym], pty);
 42 }
 43 } excerpt from hanterm-3.1.6

curfinal: buffer of size 10

keysym: any integer

keysym: [0,15]

curfinal:[10,10]
keysym: [10,15]

safe

safe

buffer-overrun

Sparrow automatically
pinpoints the buffer-overrun bug

Static Program Analysis

• Predict SW behavior statically and automatically

• static: before execution, before sell / embed

• automatic: sw is analyzed by sw (“static analyzers”)

• systematic: based on foundational theory (Abstract Interpretation)

Our Research

Direction

Theory

P
ra

ct
ic
e

Heuristics

Impractical

Direction

Theory

P
ra

ct
ic
e

Heuristics

Impractical

our
research

The Contribution

Achieved sound, precise, and scalable static analysis

(1) Soundness

error
states

Find all bugs / verify absence

program
states

(1) Soundness

error
states

sound

Find all bugs / verify absence

program
states

(1) Soundness

error
states

sound

Find all bugs / verify absence

program
states

program
states

error
states

vs.

unsound

error
states

(2) Precision

error
states

vs.

false alarms

program
states

program
states

imprecise precise

Few false alarms

(3) Scalability
nethack-3.3.0 (211KLoC)

Large programs

Common Sense: Infeasible

?

Soundness

Scalability Precision

Befo
re

our
work

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Common Sense: Infeasible

?

“bug-finders”

Soundness

Scalability Precision

Befo
re

our
work

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Common Sense: Infeasible

?

“bug-finders”

“verifiers”

Soundness

Scalability Precision

Befo
re

our
work

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

Common Sense: Infeasible

?

“bug-finders”

“verifiers”

Soundness

Scalability Precision

Befo
re

our
work

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

“optimizers”

Not Any More

!

Afte
r

our
work

Soundness

Scalability Precision

Not Any More

!
General Sparse

Analysis Framework
[PLDI’12]

Afte
r

our
work

Soundness

Scalability Precision

Not Any More

!
General Sparse

Analysis Framework
[PLDI’12]

Selective X-Sensitivity
Approach

[PLDI’14,OOPSLA’15]

Afte
r

our
work

Soundness

Scalability Precision

Significance
• Cracked down the common sense that sound, precise, and scalable

static analysis is infeasible

• Publication:

• General Sparse Analysis Framework

• ACM PLDI 2012 (top conference in programming languages)

• ACM TOPLAS 2014 (top journal in programming languages)

• Selective X-Sensitivity Approach

• ACM PLDI 2014 (top conference in programming languages)

• ACM OOPSLA 2015 (top conference in programming languages)

• ACM TOPLAS 2015 (top journal in programming languages)

Motivation

• In 2007, commercialized

• memory-bug-finding tool for full C

• sound in design, unsound yet scalable in reality

• Realistic workbench available

• “let’s try to achieve sound, precise, yet scalable version”

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

The Challenge in Reality
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2007, sound-&-global version)

The First Goal: Scalability
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

General Sparse
Analysis Framework

[PLDI’12]

Design and Implementation of
Sparse Global Analyses for C-like Languages

Hakjoo Oh Kihong Heo Wonchan Lee Woosuk Lee Kwangkeun Yi
Seoul National University

{pronto,khheo,wclee,wslee,kwang}@ropas.snu.ac.kr

Abstract
In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our
method generalizes the sparse analysis techniques on top of the
abstract interpretation framework to support relational as well as
non-relational semantics properties for C-like languages. We first
use the abstract interpretation framework to have a global static
analyzer whose scalability is unattended. Upon this underlying
sound static analyzer, we add our generalized sparse analysis tech-
niques to improve its scalability while preserving the precision of
the underlying analysis. Our framework determines what to prove
to guarantee that the resulting sparse version should preserve the
precision of the underlying analyzer.

We formally present our framework; we present that existing
sparse analyses are all restricted instances of our framework; we
show more semantically elaborate design examples of sparse non-
relational and relational static analyses; we present their implemen-
tation results that scale to analyze up to one million lines of C pro-
grams. We also show a set of implementation techniques that turn
out to be critical to economically support the sparse analysis pro-
cess.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program Analysis

Keywords Static analysis, abstract interpretation, sparse analysis

1. Introduction
Precise, sound, scalable yet global static analyzers have been un-
achievable in general. Other than almost syntactic properties, once
the target property becomes slightly deep in semantics it’s been a
daunting challenge to achieve the four goals in a single static an-
alyzer. This situation explains why, for example, in the static er-
ror detection tools for full C, there exists a clear dichotomy: either
“bug-finders” that risk being unsound yet scalable or “verifiers”
that risk being unscalable yet sound. No such tools are scalable
to globally analyze million lines of C code while being sound and
precise enough for practical use.

In this article we present a general method for achieving global
static analyzers that are precise, sound, yet also scalable. Our ap-
proach generalizes the sparse analysis ideas on top of the abstract

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, 2012, Beijing, China.
Copyright c� 2012 ACM 978-1-4503-1205-9/12/06. . . $10.00

interpretation framework. Since the abstract interpretation frame-
work [9, 11] guides us to design sound yet arbitrarily precise static
analyzers for any target language, we first use the framework to
have a global static analyzer whose scalability is unattended. Upon
this underlying sound static analyzer, we add our generalized sparse
analysis techniques to improve its scalability while preserving the
precision of the underlying analysis. Our framework determines
what to prove to guarantee that the resulting sparse version should
preserve the precision of the underlying analyzer.

Our framework bridges the gap between the two existing tech-
nologies – abstract interpretation and sparse analysis – towards
the design of sound, yet scalable global static analyzers. Note that
while abstract interpretation framework provides a theoretical knob
to control the analysis precision without violating its correctness,
the framework does not provide a knob to control the resulting an-
alyzer’s scalability preserving its precision. On the other hand, ex-
isting sparse analysis techniques [6, 14, 15, 19, 20, 24, 40, 42, 44]
achieve scalability, but they are mostly algorithmic and tightly cou-
pled with particular analyses.1 The sparse techniques are not gen-
eral enough to be used for an arbitrarily complicated semantic anal-
ysis.

Contributions Our contributions are as follows.

• We propose a general framework for designing sparse static
analysis. Our framework is semantics-based and precision-
preserving. We prove that our framework yields a correct sparse
analysis that has the same precision as the original.

• We present a new notion of data dependency, which is a key to
the precision-preserving sparse analysis. Unlike conventional
def-use chains, sparse analysis with our data dependency is
fully precise.

• We design sparse non-relational and relational analysis which
are still general as themselves. We can instantiate these designs
with a particular non-relational and relational abstract domains,
respectively.

• We prove the practicality of our framework by experimentally
demonstrating the achieved speedup of an industrial-strength
static analyzer [23, 26, 28, 35–38]. The sparse analysis can
analyze programs up to 1 million lines of C code with interval
domain and up to 100K lines of C code with octagon domain.

Outline Section 2 explains our sparse analysis framework. Sec-
tion 3 and 4 design sparse non-relational and relational analyes,
respectively, based on our framework. Section 5 discusses several
issues involved in the implementations. Section 6 presents the ex-
perimental studies. Section 7 discusses related work.

1 A few techniques [7, 39] are in general settings but instead they take
coarse-grained approach to sparsity.

PL
DI’12

TOPL
AS’1

4

SC
P’1

3

VMCAI'11

SPE
’10

APL
AS’0

9,'1
1

The First Goal: Scalability
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

General Sparse
Analysis Framework

[PLDI’12]

Scalability Improvement

(2012, sound-&-global version)

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

1 Million LoC in 10 hrs

x = x+1

y = y-1

z = x

v = y

ret *a+*b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x
Key: General

Sparse Analysis
“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x
Key: General

Sparse Analysis
“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

y

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

z

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b
x
y
z
v
a
b

x

x

y

y

z

v

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

v

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x
y
z
v
a
b

x

x

y

y

z

z

v

v

a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

x = x+1

y = y-1

z = x

v = y

ret *a+*b

x

x

y

y

z

z

v

v

a
b

Key: General
Sparse Analysis

“Right Part at Right Moment”

PL
DI’1

2

General Sparse Analysis
Framework

Theorem. (preservation of soundness and precision)

“An important strength is that the theoretical result is very
general ... The result should be highly influential on future
work in sparse analysis.” (from PLDI reviews)

PL
DI’1

2

The Second Goal: Precision
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

The Second Goal: Precision
Soundness

Scalability Precision

Catching Software Bugs Early at Build Time

An Overview of
Sparrow’s Static Program Analysis Technology

July 2007

Copyright c⃝ 2007 Fasoo.com, Inc. All rights reserved.

(2012, sound-&-global version)

Challenge: Can we achieve it without scalability loss?

cf) Existing Techniques
Soundness

Scalability Precision

context-sensitivity,
relational analysis,

etc

program
states

error
states

program
states

error
states

vs.

Selective X-Sensitivity Approach

• Key Idea: Improve precision only when it matters

PL
DI’1

4

ours existing techniques

Selection Strategy
• Impact pre-analysis [PLDI’14]:

• Learning from codebase [OOPSLA’15]:

main analysisImpact pre-analysis
{x,y,z,…}

P1, P2, …,Pm

Codebase

⇒ W

Effectiveness

program
statesvs.program

states

 +25% / -1300%+25% / -25%

error
states

error
states

Enabled Powerful Static Analysis

General Sparse
Analysis Framework

[PLDI’12]

Selective X-Sensitivity
Framework
[PLDI’14]

Soundness

Scalability Precision

Static Analysis for Verification

Red Hawk Deimos-2Hubo KAIST PET-MRI

• Static verifier for flight SW

• Static verifier for robot SW

• Static verifier for satellite SW, etc

Safety-critical softwares

Static Analysis for Security
Security-critical softwares

• Security verifiers for OpenSSL, Apache, Sendmail, etc

• New Software challenges:  
e.g., reliability, energy-efficiency, security, …

Static Analysis for
Modern Computing Platforms

- Mobile
- Cloud
- Parallel
- Wearable
- …

Static Analysis for
Mobile Computing

Static Analysis for
Mobile Computing

compute A

co
mpu

te
B return B

compute B

compute C

B: compute-intensive part

Static Analysis for
Mobile Computing

compute A

co
mpu

te
B return B

compute B

compute C

B: compute-intensive part

Plan: Static analysis to estimate power consumption

Static Analysis for
Parallel Computing

Concurrency bugs

• detection of concurrency bugs

data races dead locks

• repair of concurrency bugs

Programming system for

Programming Languages Theories

 Static Analysis
 Technology

SW Security
SW Verification

Mobile / Cloud / Parallel Computing

Many others (SE, Network, etc)

Research Program
• Undergraduate research interns

• Graduate students for pursuing master and phd courses

• Related researches:

