COSE312: Compilers

Lecture 8 - Bottom-Up Parsing

Hakjoo Oh

2015 Fall

Expression Grammar

Expression grammar:

$$
E \rightarrow E+E|E * E|(E) \mid \text { id }
$$

Unambiguous version:
(1) $E \rightarrow E+T$
(2) $E \rightarrow T$
(3) $T \rightarrow T * F$
(4) $T \rightarrow F$
(5) $F \rightarrow(E)$
(6) $F \rightarrow$ id

Bottom-Up Parsing

- Construct a parse tree beginning at the leaves and working up towards the root.
- Ex) for input id $* \mathbf{i d}$:

- A process of "reducing" a string \boldsymbol{w} to the start symbol.
- Construct the rightmost-derivation in reverse:

$$
E \Rightarrow T \Rightarrow T * F \Rightarrow T * \mathrm{id} \Rightarrow F * \mathrm{id} \Rightarrow \mathrm{id} * \mathrm{id}
$$

Handle

- In bottom-up parsing, we have to make decisions about when to reduce and what production to apply.
- For instance, for $\boldsymbol{T} *$ id, we reduce id to \boldsymbol{F} because reducing \boldsymbol{T} does not lead to a right-sentential form.
- Handle: a substring that matches the body of a production and whose reduction leads to a right-sentential form.
- A bottom-up parsing is a process of finding a handle and reducing it.

Right Sentential Form	Handle	Reducing Production
$\mathbf{i d}_{\mathbf{1}} * \mathbf{i d}_{\mathbf{2}}$	$\mathbf{i d}_{\mathbf{1}}$	$\boldsymbol{F} \rightarrow \mathbf{i d}$
$\boldsymbol{F} * \mathbf{i d}_{\mathbf{2}}$	\boldsymbol{F}	$\boldsymbol{T} \rightarrow \boldsymbol{F}$
$\boldsymbol{T} * \mathbf{i d}_{\mathbf{2}}$	id $_{\mathbf{2}}$	$\boldsymbol{F} \rightarrow \mathbf{i d}$
$\boldsymbol{T} * \boldsymbol{F}$	$\boldsymbol{T} * \boldsymbol{F}$	$\boldsymbol{T} \rightarrow \boldsymbol{T} * \boldsymbol{F}$
\boldsymbol{T}	\boldsymbol{T}	$\boldsymbol{E} \rightarrow \boldsymbol{T}$

LR Parsing

- The most prevalent type of bottom-up parsing.
- Handles are recognized by a deterministic finite automaton.
- LR(k)
- "L": Left-to-right scanning of the input
- "R": Rightmost-derivation in reverse
- "k": k-tokens lookahead
- We consider $\operatorname{LR}(0), \operatorname{SLR}, \operatorname{LR}(1), \operatorname{LALR}(1)$ parsing algorithms.

Why LR parsing?

- Widely used:
- Most automatic parser generators are based on LR parsing
- General and powerful:
- $\mathrm{LL}(\mathrm{k}) \subseteq \mathrm{LR}(\mathrm{k})$
- Most programming languages can be described by LR grammars

LR Parsing Overview

An LR parser has a stack and an input. Based on the lookahead and stack contents, perform two kinds of actions:

- Shift
- performed when the top of the stack is not a handle
- move the first input token to the stack
- Reduce
- performed when the top of the stack is a handle
- choose a rule $\boldsymbol{X} \rightarrow \boldsymbol{A} B C$; pop C, B, A push X

Example: id $*$ id

(1) $E \rightarrow E+T$
(2) $E \rightarrow T$
(3) $T \rightarrow T * F$
(4) $T \rightarrow F$
(5) $F \rightarrow(E)$
(6) $F \rightarrow$ id

Stack	Input	Action
	$\mathbf{i d} * \mathbf{i d} \$$	shift
$\mathbf{i d}$	$* \mathbf{i d} \$$	reduce by $\boldsymbol{F} \rightarrow \mathbf{i d}$
\boldsymbol{F}	$* \mathbf{i d} \$$	reduce by $\boldsymbol{T} \rightarrow \boldsymbol{F}$
\boldsymbol{T}	$* \mathbf{i d} \$$	shift
$\boldsymbol{T} *$	$\mathbf{i d} \$$	shift
$\boldsymbol{T} * \mathbf{i d}$	$\$$	reduce by $\boldsymbol{F} \rightarrow \mathbf{i d}$
$\boldsymbol{T} * \boldsymbol{F}$	$\$$	reduce by $\boldsymbol{T} \rightarrow \boldsymbol{T} * \boldsymbol{F}$
\boldsymbol{T}	$\$$	reduce by $\boldsymbol{E} \rightarrow \boldsymbol{T}$
\boldsymbol{E}	$\$$	shift $($ accept $)$

Recognizing Handles

By using a deterministic finite automaton. The transition table (parsing table) for the expression grammar:

State	id	+	$*$	$($	$)$	$\$$	E	T	F
0	$s 5$			$s 4$			$g 1$	$g 2$	$g 3$
1		$s 6$				acc			
2		$r 2$	$s 7$		$r 2$	$r 2$			
3		$r 4$	$r 4$		$r 4$	$r 4$			
4	$s 5$			$s 4$			$g 8$	$g 2$	$g 3$
5		$r 6$	$r 6$		$r 6$	$r 6$			
6	$s 5$			$s 4$				$g 9$	$g 3$
7	$s 5$			$s 4$					$g 10$
8		$s 6$			$s 11$				
9		$r 1$	$s 7$		$r 1$	$r 1$			
10		$r 3$	$r 3$		$r 3$	$r 3$			
11		$r 5$	$r 5$		$r 5$	$r 5$			

Recognizing Handles

- Given a parse state

Stack	Input
$\boldsymbol{T} *$	id $\$$

(1) Run the DFA on stack, treating shift/goto actions as edges of the DFA: $\mathbf{0} \rightarrow \mathbf{2} \rightarrow \mathbf{7}$.
(2) Look up the entry ($\mathbf{7}, \mathbf{i d}$) of the transition table: shift 5. (not a handle)
(3) Push id onto the stack.

- Given a parse state

(1) Run the DFA on stack: $0 \rightarrow 2 \rightarrow 7 \rightarrow 5$.
(2) Look up the entry $(5, \$)$ of the transition table: reduce 6. (handle)
(3) Reduce by rule 6: $\boldsymbol{F} \rightarrow$ id

LR Parsing Process

To avoid rescanning the stack for each token, the stack maintains DFA states:

Stack	Symbols	Input	Action
0		id * id\$	shift to 5
05	id	*id\$	reduce by $6(\boldsymbol{F} \rightarrow \mathbf{i d})$
03	F	*id\$	reduce by $4(\boldsymbol{T} \rightarrow \boldsymbol{F})$
02	T	*id\$	shift to 7
027	T*	id\$	shift to 5
0275	$T *$ id	\$	reduce by $6(\boldsymbol{F} \rightarrow \mathbf{i d})$
02710	$\boldsymbol{T} * \boldsymbol{F}$	\$	reduce by $3(\boldsymbol{T} \rightarrow \boldsymbol{T} * \boldsymbol{F})$
02	T	\$	reduce by $2(\boldsymbol{E} \rightarrow \boldsymbol{T})$
01	E	\$	accept

LR Parsing Algorithm

Repeat the following:
(1) Look up top stack state, and input symbol, to get an action.
(2) If the action is

- Shift(n): Advance input one token; push \boldsymbol{n} on stack
- Reduce(k):
(1) Pop stack as many times as the number of symbols on the right hand side of rule \boldsymbol{k}
(2) Let \boldsymbol{X} be the left-hand-side symbol of rule \boldsymbol{k}
(3) In the state now on top of stack, look up \boldsymbol{X} to get "goto \boldsymbol{n} "
(4) Push \boldsymbol{n} on top of stack
- Accept: Stop parsing, report success.
- Error: Stop parsing, report failure.

LR(0) and SLR Parser Generation

For the augmented grammar

(0)	E^{\prime}	\rightarrow	E
(1)	E	\rightarrow	$E+T$
(2)	E	\rightarrow	T
(3)	T	\rightarrow	$T * F$
(4)	T	\rightarrow	F
(5)	F	\rightarrow	(E)
(6)	F	\rightarrow	id

construct the parsing table:

State	id	+	$*$	$($	$)$	$\$$	E	T	F
0	$s 5$			$s 4$			$g 1$	$g 2$	$g 3$
1		$s 6$				acc			
2		$r 2$	$s 7$		$r 2$	$r 2$			
3		$r 4$	$r 4$		$r 4$	$r 4$			
4	$s 5$			$s 4$			$g 8$	$g 2$	$g 3$
5		$r 6$	$r 6$		$r 6$	$r 6$			
6	$s 5$			$s 4$				$g 9$	$g 3$
7	$s 5$			$s 4$					$g 10$
8		$s 6$			$s 11$				
9		$r 1$	$s 7$		$r 1$	$r 1$			
10		$r 3$	$r 3$		$r 3$	$r 3$			
11		$r 5$	$r 5$		$r 5$	$r 5$			

LR(0) Automaton

The parsing table is constructed from the $\operatorname{LR}(0)$ automaton:

LR(0) Items

A state is a set of items.

- An item is a production with a dot somewhere on the body.
- The items for $\boldsymbol{A} \rightarrow \boldsymbol{X Y Z}$:

$$
\begin{aligned}
& A \rightarrow . X Y Z \\
& A \rightarrow X . Y Z \\
& A \rightarrow X Y . Z \\
& A \rightarrow X Y Z .
\end{aligned}
$$

- $\boldsymbol{A} \rightarrow \boldsymbol{\epsilon}$ has only one item $\boldsymbol{A} \rightarrow \cdot$.
- An item indicates how much of a production we have seen in parsing.

The Initial Parse State

- Initially, the parser will have an empty stack, and the input will be a complete \boldsymbol{E}-sentence, indicated by item

$$
E^{\prime} \rightarrow . E
$$

where the dot indicates the current position of the parser.

- Collect all of the items reachable from the initial item without consuming any input tokens:

$$
I_{0}=\begin{array}{lll}
E^{\prime} & \rightarrow & . E \\
E & \rightarrow & . E+T \\
E & \rightarrow & . T \\
T & \rightarrow & . T \\
T & \rightarrow & . \boldsymbol{F} \\
\boldsymbol{F} & \rightarrow & .(E) \\
\boldsymbol{F} & \rightarrow & . \mathrm{id} \\
\hline
\end{array}
$$

Closure of Item Sets

IF I is a set of items for a grammar \boldsymbol{G}, then $\operatorname{CLOSURE}(\boldsymbol{I})$ is the set of items constructed from I by the two rules:
(1) Initially, add every item in I to $C L O S U R E(I)$.
(2) If $\boldsymbol{A} \rightarrow \alpha \cdot \boldsymbol{B} \beta$ is in $\operatorname{CLOSURE}(\boldsymbol{I})$ and $\boldsymbol{B} \rightarrow \gamma$ is a production, then add the item $\boldsymbol{B} \rightarrow . \gamma$ to $\operatorname{CLOSURE}(\boldsymbol{I})$, if it is not already there. Apply this rule until no more new items can be added to CLOSURE(I).
In algorithm:

```
CLOSURE(I) =
    repeat
        for any item \(\boldsymbol{A} \rightarrow \boldsymbol{\alpha} . \boldsymbol{B} \boldsymbol{\beta}\) in \(\boldsymbol{I}\)
                for any production \(\boldsymbol{B} \rightarrow \gamma\)
                \(I=I \cup\{X \rightarrow . \gamma\}\)
    until \(\boldsymbol{I}\) does not change
    return \(I\)
```


Construction of LR(0) Automaton

For the initial state

$$
I_{0}=\begin{array}{lll}
E^{\prime} & \rightarrow & . E \\
E & \rightarrow & . E+T \\
E & \rightarrow & . \boldsymbol{T} \\
\boldsymbol{T} & \rightarrow & . \boldsymbol{T} * \boldsymbol{F} \\
\boldsymbol{T} & \rightarrow & . \boldsymbol{F} \\
\boldsymbol{F} & \rightarrow & .(E) \\
\boldsymbol{F} & \rightarrow & . \mathrm{id}
\end{array}
$$

construct the next states for each grammar symbol.
Consider \boldsymbol{E} :
(1) Find all items of form $\boldsymbol{A} \rightarrow \boldsymbol{\alpha} \cdot \boldsymbol{E} \boldsymbol{\beta}:\left\{\boldsymbol{E}^{\prime} \rightarrow . \boldsymbol{E}, \boldsymbol{E} \rightarrow . \boldsymbol{E}+\boldsymbol{T}\right\}$
(2) Move the dot over $\boldsymbol{E}:\left\{\boldsymbol{E}^{\prime} \rightarrow \boldsymbol{E} ., \boldsymbol{E} \rightarrow \boldsymbol{E} .+\boldsymbol{T}\right\}$
(3) Closure it:

$$
I_{1}=\begin{array}{rll}
E^{\prime} & \rightarrow & E . \\
E & \rightarrow & E .+T
\end{array}
$$

Construction of LR(0) Automaton

$$
I_{0}=\begin{array}{lll}
E^{\prime} & \rightarrow & . \boldsymbol{E} \\
E & \rightarrow & . \boldsymbol{E}+\boldsymbol{T} \\
\boldsymbol{E} & \rightarrow & . \boldsymbol{T} \\
\boldsymbol{T} & \rightarrow & . \boldsymbol{T} * \boldsymbol{F} \\
\boldsymbol{T} & \rightarrow & . \boldsymbol{F} \\
\boldsymbol{F} & \rightarrow & .(\boldsymbol{E}) \\
\boldsymbol{F} & \rightarrow & . \mathrm{id}
\end{array}
$$

Consider (:
(1) Find all items of form $\boldsymbol{A} \rightarrow \boldsymbol{\alpha} \cdot(\boldsymbol{\beta}:\{\boldsymbol{F} \rightarrow .(\boldsymbol{E})\}$
(2) Move the dot over $\boldsymbol{E}:\{\boldsymbol{F} \rightarrow(. \boldsymbol{E})\}$
(3) Closure it:

$$
I_{4}=\begin{array}{lll}
\boldsymbol{F} & \rightarrow & (. E) \\
E & \rightarrow & . E+T \\
E & \rightarrow & . \boldsymbol{T} \\
\boldsymbol{T} & \rightarrow & . T * F \\
T & \rightarrow & . \boldsymbol{F} \\
\boldsymbol{F} & \rightarrow & .(E) \\
\boldsymbol{F} & \rightarrow & . \mathbf{i d} \\
\hline
\end{array}
$$

Goto

When \boldsymbol{I} is a set of items and \boldsymbol{X} is a grammar symbol (terminals and nonterminals, $\operatorname{GOTO}(\boldsymbol{I}, \boldsymbol{X})$ is defined to be the closure of the set of all items $\boldsymbol{A} \rightarrow \boldsymbol{\alpha} \boldsymbol{X} . \boldsymbol{\beta}$ such that $\boldsymbol{A} \rightarrow \boldsymbol{\alpha} . \boldsymbol{X} \boldsymbol{\beta}$ is in \boldsymbol{I}.
In algorithm:

$$
\begin{aligned}
& G O T O(I, X)= \\
& \text { set } J \text { to the empty set } \\
& \text { for any item } \boldsymbol{A} \rightarrow \boldsymbol{\alpha} \cdot \boldsymbol{X} \boldsymbol{\beta} \text { in } \boldsymbol{I} \\
& \text { add } \boldsymbol{A} \rightarrow \boldsymbol{\alpha} \boldsymbol{X} \cdot \boldsymbol{\beta} \text { to } \boldsymbol{J} \\
& \text { return } \boldsymbol{C L O S U R E}(\boldsymbol{J})
\end{aligned}
$$

Construction of LR(0) Automaton

- T : the set of states
- \boldsymbol{E} : the set of edges

Initialize \boldsymbol{T} to $\left\{\boldsymbol{C L O S U R E}\left(\left\{\boldsymbol{S}^{\prime} \rightarrow \boldsymbol{S}\right\}\right)\right\}$ Initialize \boldsymbol{E} to empty
repeat
for each state \boldsymbol{I} in \boldsymbol{T}
for each item $\boldsymbol{A} \rightarrow \boldsymbol{\alpha} \cdot \boldsymbol{X} \boldsymbol{\beta}$ in I
let J be $\operatorname{GOTO}(\boldsymbol{I}, \boldsymbol{X})$
$T=T \cup\{J\}$
$E=E \cup\{I \xrightarrow{X} J\}$
until \boldsymbol{E} and \boldsymbol{T} do not change

LR(0) Automaton

Construction of LR(0) Parsing Table

- For each edge $\boldsymbol{I} \xrightarrow{\boldsymbol{X}} \boldsymbol{J}$ where \boldsymbol{X} is a terminal, we put the action shift \boldsymbol{J} at position $(\boldsymbol{I}, \boldsymbol{X})$ of the table.
- If \boldsymbol{X} is a nonterminal, we put an goto \boldsymbol{J} at position ($\boldsymbol{I}, \boldsymbol{X})$.
- For each state \boldsymbol{I} containing an item $\boldsymbol{S}^{\prime} \rightarrow \boldsymbol{S}$., we put an accept action at $(I, \$)$.
- Finally, for a state containing an item $\boldsymbol{A} \rightarrow \gamma$. (production n with the dot at the end), we put a reduce \boldsymbol{n} action at $(\boldsymbol{I}, \boldsymbol{Y})$ for every token \boldsymbol{Y}.

LR(0) Parsing Table

State	id	+	$*$	$($	$)$	$\$$	E	T	F
0	$s 5$			$s 4$			$g 1$	$g 2$	$g 3$
1		$s 6$				acc			
2	$r 2$	$r 2$	$r 2, s 7$	$r 2$	$r 2$	$r 2$			
3	$r 4$								
4	$s 5$			$s 4$			$g 8$	$g 2$	$g 3$
5	$r 6$								
6	$s 5$			$s 4$				$g 9$	$g 3$
7	$s 5$			$s 4$					$g 10$
8		$s 6$			$s 11$				
9	$r 1$	$r 1$	$r 1, s 7$	$r 1$	$r 1$	$r 1$			
10	$r 3$								
11	$r 5$								

Conflicts

The parsing table may contain conflicts (duplicated entries). Two kinds of conflicts:

- Shift/reduce conflicts: the parser cannot tell whether to shift or reduce.
- Reduce/reduce conflicts: the parser knows to reduce, but cannot tell which reduction to perform.
If the $\operatorname{LR}(0)$ parsing table for a grammar contains no conflicts, the grammar is in $\operatorname{LR}(0)$ grammar.

Construction of SLR Parsing Table

- For each edge $\boldsymbol{I} \xrightarrow{\boldsymbol{X}} \boldsymbol{J}$ where \boldsymbol{X} is a terminal, we put the action shift \boldsymbol{J} at position $(\boldsymbol{I}, \boldsymbol{X})$ of the table.
- If \boldsymbol{X} is a nonterminal, we put an goto \boldsymbol{J} at position ($\boldsymbol{I}, \boldsymbol{X})$.
- For each state \boldsymbol{I} containing an item $\boldsymbol{S}^{\boldsymbol{\prime}} \boldsymbol{\rightarrow} \boldsymbol{S}$., we put an accept action at $(I, \$)$.
- Finally, for a state containing an item $\boldsymbol{A} \rightarrow \gamma$. (production n with the dot at the end), we put a reduce \boldsymbol{n} action at $(\boldsymbol{I}, \boldsymbol{Y})$ for every token $\boldsymbol{Y} \in \boldsymbol{F O L L O W}(A)$.

SLR Parsing Table

State	id	+	$*$	$($	$)$	$\$$	E	T	F
0	$s 5$			$s 4$			$g 1$	$g 2$	$g 3$
1		$s 6$				acc			
2		$r 2$	$s 7$		$r 2$	$r 2$			
3		$r 4$	$r 4$		$r 4$	$r 4$			
4	$s 5$			$s 4$			$g 8$	$g 2$	$g 3$
5		$r 6$	$r 6$		$r 6$	$r 6$			
6	$s 5$			$s 4$				$g 9$	$g 3$
7	$s 5$			$s 4$					$g 10$
8		$s 6$			$s 11$				
9		$r 1$	$s 7$		$r 1$	$r 1$			
10		$r 3$	$r 3$		$r 3$	$r 3$			
11		$r 5$	$r 5$		$r 5$	$r 5$			

More Powerful LR Parsers

We can extend $\operatorname{LR}(0)$ parsing to use one symbol of lookahead on the input:

- LR(1) parsing:
- The parsing table is based on $\operatorname{LR}(1)$ items, $(\boldsymbol{A} \rightarrow \boldsymbol{\alpha} . \boldsymbol{B} \boldsymbol{\beta}, \boldsymbol{a})$
- Make full use of the lookahead symbol.
- Generate a large set of states.
- LALR(1) parsing.
- Based on the LR(0) items.
- Introducting lookaheads into the $\operatorname{LR}(0)$ items.
- Parsing tables have many fewer states than $\operatorname{LR}(1)$, no bigger than that of SLR.

Summary

