
COSE312: Compilers

Lecture 8 — Bottom-Up Parsing

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 1 / 28

Expression Grammar

Expression grammar:

E → E + E | E ∗ E | (E) | id

Unambiguous version:

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 2 / 28

Bottom-Up Parsing

Construct a parse tree beginning at the leaves and working up
towards the root.

Ex) for input id ∗ id:

A process of “reducing” a string w to the start symbol.

Construct the rightmost-derivation in reverse:

E ⇒ T ⇒ T ∗ F ⇒ T ∗ id⇒ F ∗ id⇒ id ∗ id

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 3 / 28

Handle

In bottom-up parsing, we have to make decisions about when to
reduce and what production to apply.

For instance, for T ∗ id, we reduce id to F because reducing T does
not lead to a right-sentential form.

Handle: a substring that matches the body of a production and
whose reduction leads to a right-sentential form.

A bottom-up parsing is a process of finding a handle and reducing it.

Right Sentential Form Handle Reducing Production

id1 ∗ id2 id1 F → id
F ∗ id2 F T → F
T ∗ id2 id2 F → id
T ∗ F T ∗ F T → T ∗ F

T T E → T

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 4 / 28

LR Parsing

The most prevalent type of bottom-up parsing.

Handles are recognized by a deterministic finite automaton.

LR(k)
I “L”: Left-to-right scanning of the input
I “R”: Rightmost-derivation in reverse
I “k”: k-tokens lookahead

We consider LR(0), SLR, LR(1), LALR(1) parsing algorithms.

Why LR parsing?

Widely used:
I Most automatic parser generators are based on LR parsing

General and powerful:
I LL(k) ⊆ LR(k)
I Most programming languages can be described by LR grammars

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 5 / 28

LR Parsing Overview

An LR parser has a stack and an input. Based on the lookahead and stack
contents, perform two kinds of actions:

Shift
I performed when the top of the stack is not a handle
I move the first input token to the stack

Reduce
I performed when the top of the stack is a handle
I choose a rule X → A B C; pop C,B,A; push X

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 6 / 28

Example: id ∗ id

(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

Stack Input Action
id ∗ id$ shift

id ∗id$ reduce by F → id
F ∗id$ reduce by T → F
T ∗id$ shift
T∗ id$ shift
T ∗ id $ reduce by F → id
T ∗ F $ reduce by T → T ∗ F
T $ reduce by E → T
E $ shift (accept)

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 7 / 28

Recognizing Handles

By using a deterministic finite automaton. The transition table (parsing
table) for the expression grammar:

State id + ∗ () $ E T F
0 s5 s4 g1 g2 g3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 g8 g2 g3
5 r6 r6 r6 r6
6 s5 s4 g9 g3
7 s5 s4 g10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 8 / 28

Recognizing Handles

Given a parse state

Stack Input

T∗ id$

1 Run the DFA on stack, treating shift/goto actions as edges of the
DFA: 0→ 2→ 7.

2 Look up the entry (7, id) of the transition table: shift 5. (not a
handle)

3 Push id onto the stack.

Given a parse state

Stack Input

T ∗ id $
1 Run the DFA on stack: 0→ 2→ 7→ 5.
2 Look up the entry (5, $) of the transition table: reduce 6. (handle)
3 Reduce by rule 6: F → id

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 9 / 28

LR Parsing Process

To avoid rescanning the stack for each token, the stack maintains DFA
states:

Stack Symbols Input Action
0 id ∗ id$ shift to 5
0 5 id ∗id$ reduce by 6 (F → id)
0 3 F ∗id$ reduce by 4 (T → F)
0 2 T ∗id$ shift to 7
0 2 7 T∗ id$ shift to 5
0 2 7 5 T ∗ id $ reduce by 6 (F → id)
0 2 7 10 T ∗ F $ reduce by 3 (T → T ∗ F)
0 2 T $ reduce by 2 (E → T)
0 1 E $ accept

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 10 / 28

LR Parsing Algorithm

Repeat the following:

1 Look up top stack state, and input symbol, to get an action.
2 If the action is

I Shift(n): Advance input one token; push n on stack
I Reduce(k):

1 Pop stack as many times as the number of symbols on the right hand
side of rule k

2 Let X be the left-hand-side symbol of rule k
3 In the state now on top of stack, look up X to get “goto n”
4 Push n on top of stack

I Accept: Stop parsing, report success.
I Error: Stop parsing, report failure.

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 11 / 28

LR(0) and SLR Parser Generation
For the augmented grammar

(0) E′ → E
(1) E → E + T
(2) E → T
(3) T → T ∗ F
(4) T → F
(5) F → (E)
(6) F → id

construct the parsing table:

State id + ∗ () $ E T F
0 s5 s4 g1 g2 g3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 g8 g2 g3
5 r6 r6 r6 r6
6 s5 s4 g9 g3
7 s5 s4 g10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 12 / 28

LR(0) Automaton

The parsing table is constructed from the LR(0) automaton:

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 13 / 28

LR(0) Items

A state is a set of items.

An item is a production with a dot somewhere on the body.

The items for A→ XY Z:

A → .XY Z
A → X.Y Z
A → XY.Z
A → XY Z.

A→ ε has only one item A→ ·.
An item indicates how much of a production we have seen in parsing.

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 14 / 28

The Initial Parse State

Initially, the parser will have an empty stack, and the input will be a
complete E-sentence, indicated by item

E′ → .E

where the dot indicates the current position of the parser.

Collect all of the items reachable from the initial item without
consuming any input tokens:

I0 =

E′ → .E
E → .E + T
E → .T
T → .T ∗ F
T → .F
F → .(E)
F → .id

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 15 / 28

Closure of Item Sets

IF I is a set of items for a grammar G, then CLOSURE(I) is the set of
items constructed from I by the two rules:

1 Initially, add every item in I to CLOSURE(I).

2 If A→ α.Bβ is in CLOSURE(I) and B → γ is a production,
then add the item B → .γ to CLOSURE(I), if it is not already
there. Apply this rule until no more new items can be added to
CLOSURE(I).

In algorithm:
CLOSURE(I) =

repeat
for any item A→ α.Bβ in I

for any production B → γ
I = I ∪ {X → .γ}

until I does not change
return I

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 16 / 28

Construction of LR(0) Automaton
For the initial state

I0 =

E′ → .E
E → .E + T
E → .T
T → .T ∗ F
T → .F
F → .(E)
F → .id

construct the next states for each grammar symbol.
Consider E:

1 Find all items of form A→ α.Eβ: {E′ → .E, E → .E + T}
2 Move the dot over E: {E′ → E., E → E.+ T}
3 Closure it:

I1 =
E′ → E.
E → E. + T

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 17 / 28

Construction of LR(0) Automaton

I0 =

E′ → .E
E → .E + T
E → .T
T → .T ∗ F
T → .F
F → .(E)
F → .id

Consider (:

1 Find all items of form A→ α.(β: {F → .(E)}
2 Move the dot over E: {F → (.E)}
3 Closure it:

I4 =

F → (.E)
E → .E + T
E → .T
T → .T ∗ F
T → .F
F → .(E)
F → .id

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 18 / 28

Goto

When I is a set of items and X is a grammar symbol (terminals and
nonterminals, GOTO(I,X) is defined to be the closure of the set of all
items A→ αX.β such that A→ α.Xβ is in I.
In algorithm:

GOTO(I,X) =
set J to the empty set

for any item A→ α.Xβ in I
add A→ αX.β to J

return CLOSURE(J)

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 19 / 28

Construction of LR(0) Automaton

T : the set of states

E: the set of edges

Initialize T to {CLOSURE({S′ → S})}
Initialize E to empty
repeat

for each state I in T
for each item A→ α.Xβ in I

let J be GOTO(I,X)
T = T ∪ {J}
E = E ∪ {I X→ J}

until E and T do not change

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 20 / 28

LR(0) Automaton

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 21 / 28

Construction of LR(0) Parsing Table

For each edge I
X→ J where X is a terminal, we put the action shift

J at position (I,X) of the table.

If X is a nonterminal, we put an goto J at position (I,X).

For each state I containing an item S′ → S., we put an accept
action at (I, $).

Finally, for a state containing an item A→ γ. (production n with
the dot at the end), we put a reduce n action at (I, Y) for every
token Y .

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 22 / 28

LR(0) Parsing Table

State id + ∗ () $ E T F
0 s5 s4 g1 g2 g3
1 s6 acc
2 r2 r2 r2, s7 r2 r2 r2
3 r4 r4 r4 r4 r4 r4
4 s5 s4 g8 g2 g3
5 r6 r6 r6 r6 r6 r6
6 s5 s4 g9 g3
7 s5 s4 g10
8 s6 s11
9 r1 r1 r1, s7 r1 r1 r1
10 r3 r3 r3 r3 r3 r3
11 r5 r5 r5 r5 r5 r5

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 23 / 28

Conflicts

The parsing table may contain conflicts (duplicated entries). Two kinds of
conflicts:

Shift/reduce conflicts: the parser cannot tell whether to shift or
reduce.

Reduce/reduce conflicts: the parser knows to reduce, but cannot tell
which reduction to perform.

If the LR(0) parsing table for a grammar contains no conflicts, the
grammar is in LR(0) grammar.

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 24 / 28

Construction of SLR Parsing Table

For each edge I
X→ J where X is a terminal, we put the action shift

J at position (I,X) of the table.

If X is a nonterminal, we put an goto J at position (I,X).

For each state I containing an item S′ → S., we put an accept
action at (I, $).

Finally, for a state containing an item A→ γ. (production n with
the dot at the end), we put a reduce n action at (I, Y) for every
token Y ∈ FOLLOW (A).

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 25 / 28

SLR Parsing Table

State id + ∗ () $ E T F
0 s5 s4 g1 g2 g3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 g8 g2 g3
5 r6 r6 r6 r6
6 s5 s4 g9 g3
7 s5 s4 g10
8 s6 s11
9 r1 s7 r1 r1
10 r3 r3 r3 r3
11 r5 r5 r5 r5

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 26 / 28

More Powerful LR Parsers

We can extend LR(0) parsing to use one symbol of lookahead on the
input:

LR(1) parsing:
I The parsing table is based on LR(1) items, (A→ α.Bβ, a)
I Make full use of the lookahead symbol.
I Generate a large set of states.

LALR(1) parsing.
I Based on the LR(0) items.
I Introducting lookaheads into the LR(0) items.
I Parsing tables have many fewer states than LR(1), no bigger than that

of SLR.

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 27 / 28

Summary

Hakjoo Oh COSE312 2015 Fall, Lecture 8 October 1, 2015 28 / 28

