COSE312: Compilers

Lecture 6 - Syntax Analysis (1)

Hakjoo Oh
2015 Fall

Syntax Analysis (Parsing)

Determine whether or not the input program is syntactically valid. If so, transform the stream

$$
(I D, \text { pos }),=,(I D, \text { init }),+,(I D, \text { rate }), *,(N U M, 10)
$$

into the syntax tree (or parse tree):

Contents

- Specification: context-free grammars.
- Algorithms: top-down and bottom-up parsing algorithms
- Tools: automatic parser generator

Context-Free Grammar

Example: Palindrome

- A string is a palindrome if it reads the same forward and backward.
- $L=\left\{w \in\{0,1\}^{*} \mid w=w^{R}\right\}$
- L is not regular, but context-free.
- Every context-free language is defined by a recursive definition.
- Basis: $\boldsymbol{\epsilon}, \mathbf{0}$, and $\mathbf{1}$ are palindromes.
- Induction: If w is a palindrome, so are $\mathbf{0 w 0}$ and $\mathbf{1 w 1}$.
- The recursive definition is expressed by a context-free grammar.

$$
\begin{array}{lll}
P & \rightarrow & \epsilon \\
P & \rightarrow & 0 \\
P & \rightarrow & 1 \\
P & \rightarrow & 0 P 0 \\
P & \rightarrow & 1 P 1
\end{array}
$$

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar \boldsymbol{G} is defined as a quadruple:

$$
G=(V, T, S, P)
$$

- \boldsymbol{V} : a finite set of variables (nonterminals)
- T : a finite set of terminal symbols (tokens)
- $\boldsymbol{S} \in \boldsymbol{V}$: the start variable
- P: a finite set of productions. A production has the form

$$
x \rightarrow y
$$

where $\boldsymbol{x} \in \boldsymbol{V}$ and $\boldsymbol{y} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$.

Example: Expressions

$$
G=(\{E\},\{(,), \mathrm{id}\}, E, P)
$$

where \boldsymbol{P} :

$$
E \rightarrow E+E|E * E|-E|(E)| \text { id }
$$

The language includes $\mathbf{i d} *(\mathbf{i d}+\mathbf{i d})$ because it is "derived" from \boldsymbol{E} as follows:

$$
\begin{aligned}
& \boldsymbol{E} \Rightarrow \boldsymbol{E} * \boldsymbol{E} \Rightarrow \mathrm{id} * \boldsymbol{E} \Rightarrow \mathrm{id} *(\boldsymbol{E}) \Rightarrow \mathrm{id} *(\boldsymbol{E}+\boldsymbol{E}) \\
& \Rightarrow \mathrm{id} *(\mathrm{id}+\boldsymbol{E}) \Rightarrow \mathrm{id} *(\mathrm{id}+\mathrm{id})
\end{aligned}
$$

Derivation

Definition (Derivation Relation, \Rightarrow)

Let $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ be a context-free grammar. Let $\boldsymbol{\alpha} \boldsymbol{A} \boldsymbol{\beta}$ be a string of terminals and variables, where $\boldsymbol{A} \in \boldsymbol{V}$ and $\boldsymbol{\alpha}, \boldsymbol{\beta} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$. Let $\boldsymbol{A} \rightarrow \boldsymbol{\gamma}$ is a production in \boldsymbol{G}. Then, we say $\boldsymbol{\alpha} \boldsymbol{A} \boldsymbol{\beta}$ derives $\boldsymbol{\alpha} \boldsymbol{\gamma} \boldsymbol{\beta}$, and write

$$
\alpha A \beta \Rightarrow \alpha \gamma \beta
$$

Definition $\left(\Rightarrow^{*}\right.$, Closure of $\left.\Rightarrow\right)$

\Rightarrow^{*} is a relation that represents zero, or more steps of derivations:

- Basis: For any string $\boldsymbol{\alpha}$ of terminals and variables, $\boldsymbol{\alpha} \Rightarrow^{*} \boldsymbol{\alpha}$.
- Induction: If $\alpha \Rightarrow^{*} \beta$ and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^{*} \gamma$.

Language of Grammar

> Definition (Sentential Forms) If $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{T}, \boldsymbol{S}, \boldsymbol{P})$ is a context-free grammar, then any string $\boldsymbol{\alpha} \in(\boldsymbol{V} \cup \boldsymbol{T})^{*}$ such that $S^{*} \Rightarrow^{*} \boldsymbol{\alpha}$ is a sentential form.

Definition (Sentence)
 A sentence of \boldsymbol{G} is a sentential form with no non-terminals.

Definition (Language of Grammar)

The language of a grammar \boldsymbol{G} is the set of all sentences:

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\} .
$$

Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a sentence $-(\mathrm{id}+\mathrm{id})$ can be derived by

$$
E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(\mathrm{id}+E) \Rightarrow-(\mathrm{id}+\mathrm{id})
$$

or alternatively by

$$
E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(E+\mathrm{id}) \Rightarrow-(\mathrm{id}+\mathrm{id})
$$

Leftmost and Rightmost Derivations

- Leftmost derivation: the leftmost non-terminal in each sentential is always chosen. If $\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ is a step in which the leftmost non-terminal in $\boldsymbol{\alpha}$ is replaced, we write $\boldsymbol{\alpha} \Rightarrow_{l} \boldsymbol{\beta}$.

$$
E \Rightarrow_{l}-E \Rightarrow_{l}-(E) \Rightarrow_{l}-(E+E) \Rightarrow_{l}-(\mathrm{id}+E) \Rightarrow_{l}-(\mathrm{id}+\mathrm{id})
$$

- Rightmost derivation (canonical derivation): the rightmost non-terminal in each sentential is always chosen. If $\boldsymbol{\alpha} \Rightarrow \boldsymbol{\beta}$ is a step in which the rightmost non-terminal in $\boldsymbol{\alpha}$ is replaced, we write $\alpha \Rightarrow_{r} \boldsymbol{\beta}$.

$$
E \Rightarrow_{r}-E \Rightarrow_{r}-(E) \Rightarrow_{r}-(E+E) \Rightarrow_{r}-(E+\mathrm{id}) \Rightarrow_{r}-(\mathrm{id}+\mathrm{id})
$$

- If $S \Rightarrow_{l}^{*} \boldsymbol{\alpha}, \boldsymbol{\alpha}$ is a left sentential form.
- If $S \Rightarrow_{r}^{*} \boldsymbol{\alpha}, \boldsymbol{\alpha}$ is a right sentential form.

Parse Tree

A graphical tree-like representation of a derivation. E.g., the derivation

$$
E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(\mathrm{id}+E) \Rightarrow-(\mathrm{id}+\mathrm{id})
$$

is represented by the parse tree:

- Each interior node represents the application of a production.
- The interior node is labeled by the head of the production.
- Children are labeled by the symbols in the body of the production.

Parse Tree

A parse tree ignores variations in the order in which symbols are replaced. Two derivations

$$
\begin{aligned}
& E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(\mathrm{id}+E) \Rightarrow-(\mathrm{id}+\mathrm{id}) \\
& E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(E+\mathrm{id}) \Rightarrow-(\mathrm{id}+\mathrm{id})
\end{aligned}
$$

produce the same parse tree:

The parse trees for two derivations are identical if the derivations use the same set of rules (they apply those rules only in a different order).

Ambiguity

A grammar is ambiguous if

- it produces more than one parse tree for some sentence,
- it has multiple leftmost derivations, or
- it has multiple rightmost derivations.

Example

The grammar

$$
E \rightarrow E+E|E * E|-E|(E)| \text { id }
$$

is ambiguous, because it permits two different leftmost derivations for id $+\mathbf{i d} * \mathbf{i d}$:
(1) $E \Rightarrow E+E \Rightarrow \mathrm{id}+E \Rightarrow \mathrm{id}+E * E \Rightarrow \mathrm{id}+\mathrm{id} * E \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}$

(2) $E \Rightarrow E * E \Rightarrow E+E * E \Rightarrow \mathrm{id}+E * E \Rightarrow \mathrm{id}+\mathrm{id} * E \Rightarrow \mathrm{id}+\mathrm{id} * \mathrm{id}$

Writing a Grammar

Transformations to make a grammar more suitable for parsing:

- eliminating ambiguity
- eliminating left-recursion
- left factoring

Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an ambiguous grammar:

$$
E \rightarrow E+E|E * E|(E) \mid \text { id }
$$

To eliminate the ambiguity, we express in grammar

- (precedence) bind $*$ tighter than +
- $1+2 * 3$ is always parsed by $1+(2 * 3)$
- (associativity) $*$ and + associate to the left
- $\mathbf{1 + 2}+3$ is always parsed by $(1+2)+3$

An unambiguous grammar:

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow \operatorname{id} \mid(E)
\end{aligned}
$$

- parse tree for $1+2+3$
- parse tree for $1+2 * 3$

Exercise

Transform the grammar

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow \mathrm{id} \mid(E)
\end{aligned}
$$

so that $*$ associate to the right.

Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal \boldsymbol{A} such that there \boldsymbol{A} appears as the first right-hand-side symbol in an \boldsymbol{A}-production, e.g.,

$$
E \rightarrow E+T \mid T
$$

To eliminate left-recursion, rewrite the grammar using right recursion:

$$
\begin{aligned}
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+T E^{\prime} \\
& E^{\prime} \rightarrow \epsilon
\end{aligned}
$$

Left Factoring

The grammar
$S \rightarrow$ if E then S else S
$S \rightarrow$ if E then S
has rules with the same prefix. We can left factor the grammar as follows:

$$
\begin{aligned}
& S \rightarrow \text { if } E \text { then } S X \\
& X \rightarrow \epsilon \\
& X \rightarrow \text { else } S
\end{aligned}
$$

Summary

- The syntax of a programming language is usually specified by context-free grammars.
- Basic definitions and terminologies: context-free grammar, derivation, left/rightmost derivations, parse tree, ambiguous/unambiguous grammar, grammar transformation (eliminating ambiguity, eliminating left-recursion, left factoring)

