COSE312: Compilers

Lecture 6 — Syntax Analysis (1)

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 1/20

Syntax Analysis (Parsing)

token streams syntax tree
character | Lexical Syntax IR IR R
"1 Analyzer Analyzer [] Translator e
stream Y Y

Determine whether or not the input program is syntactically valid. If so,
transform the stream

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)
into the syntax tree (or parse tree):

(ID (:\+
,P /

*
(ID,init) / \
(ID,rate) (NUM,10)

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015

2/20

Contents

o Specification: context-free grammars.
@ Algorithms: top-down and bottom-up parsing algorithms

@ Tools: automatic parser generator

syntax specification
in context-free grammar

Parser Generator

v
stream of tokens syntax tree

—_— Parser —

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 3 /20

Context-Free Grammar

Example: Palindrome

@ A string is a palindrome if it reads the same forward and backward.
o L ={we{0,1}* | w=w?}

@ L is not regular, but context-free.
°

Every context-free language is defined by a recursive definition.

» Basis: €, 0, and 1 are palindromes.
» Induction: If w is a palindrome, so are Ow0 and 1wl.

@ The recursive definition is expressed by a context-free grammar.
P — €
P — 0
P — 1
P — O0PO
P — 1P1

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 4/20

Context-Free Grammar

Definition (Context-Free Grammar)

A context-free grammar G is defined as a quadruple:

G = (V,T, S, P)

V' a finite set of variables (nonterminals)

T a finite set of terminal symbols (tokens)

S € V: the start variable

P: a finite set of productions. A production has the form

T —Y

wherex € Vandy € (V UT)*.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 5/ 20

Example: Expressions

G = {E}{(,),id}, E, P)
where P:
E—-E+E|ExE|—E|(E)|id

The language includes id * (id 4 id) because it is “derived” from E as
follows:

E=FExE=id+«FE=id*(F)=id* (E+ E)
= id * (id + E) = id * (id + id)

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 6 /20

Derivation

Definition (Derivation Relation, =)

Let G = (V, T, S, P) be a context-free grammar. Let A3 be a string
of terminals and variables, where A € V and a, 8 € (V UT)*. Let
A — ~ is a production in G. Then, we say a A3 derives a3, and write

aAB = aypB.

Definition (=*, Closure of =)

=* is a relation that represents zero, or more steps of derivations:
@ Basis: For any string « of terminals and variables, &« =* a.
@ Induction: If @ =* 3 and B3 = ~, then a =* ~.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 7 /20

Language of Grammar

Definition (Sentential Forms)

If G = (V,T, S, P) is a context-free grammar, then any string
a € (VUT)* such that S =* a is a sentential form.

Definition (Sentence)

A sentence of G is a sentential form with no non-terminals.

Definition (Language of Grammar)

The language of a grammar G is the set of all sentences:

LG)={weT"|S="w}

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 8 /20

Derivation is not unique

At each step in a derivation, there are multiple choices to be made, e.g., a
sentence — (id + id) can be derived by

FE=-FE= —(E)= —(F+FE)= —({d+ FE) = —(id +id)

or alternatively by

E=-FEF= —(F)= —(E+4+FE)= —(E+id) = —(id +id)

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 9 /20

Leftmost and Rightmost Derivations

@ Leftmost derivation: the leftmost non-terminal in each sentential is
always chosen. If a = 3 is a step in which the leftmost non-terminal
in v is replaced, we write a« =>; 3.

E=, —E=;,—(E)=—(E+E)=;—({d+ E) =; —(id 4+ id)
@ Rightmost derivation (canonical derivation): the rightmost
non-terminal in each sentential is always chosen. If a = 3 is a step

in which the rightmost non-terminal in o is replaced, we write
a =, G.

E=, —-FE=,—(FE)=, —(E+E)=, —(E+id) =, —(id 4+ id)

e If § =] «, ais a left sentential form.

e If S =7 «, ais a right sentential form.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 10 / 20

Parse Tree
A graphical tree-like representation of a derivation. E.g., the derivation
E=—-FE= —(F)= —(E+E)= —(id+ FE) = —(id 4+ id)

is represented by the parse tree:

3

N

%

/1N

£ + E

| |

id id

@ Each interior node represents the application of a production.
@ The interior node is labeled by the head of the production.
@ Children are labeled by the symbols in the body of the production.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 11 /20

Parse Tree

A parse tree ignores variations in the order in which symbols are replaced
Two derivations

E= —-F= —(E)= —(E+FE)= —(id+ E) = —(id 4+ id)

E= —-F= —(F)= —(E+E)= —(E+id) = —(id 4+ id)
produce the same parse tree:

/\
/I\
/I\
1

id id

The parse trees for two derivations are identical if the derivations use the

same set of rules (they apply those rules only in a different order).

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 12 /20

Ambiguity

A grammar is ambiguous if
@ it produces more than one parse tree for some sentence,
@ it has multiple leftmost derivations, or

@ it has multiple rightmost derivations.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 13 /20

Example
The grammar
E—-E+E|ExE|—E|(E)|id

is ambiguous, because it permits two different leftmost derivations for
id + id * id:
Q FE= FEF+FE=id+F=id+ExE = id+id*FE = id+idx*id
E
/N
RPN
d E * E
[
id id
Q@ F = ExFE = E+E+«FE = id+ExE = id+id+«FE = id+idx*id
E
AN
/N
E + E
[
id id

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 14 /20

Writing a Grammar

Transformations to make a grammar more suitable for parsing:
e eliminating ambiguity
@ eliminating left-recursion

o left factoring

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 15 / 20

Eliminating Ambiguity

We can usually eliminate ambiguity by transforming the grammar. E.g., an
ambiguous grammar:

E—E+E|ExE|(E)|id

To eliminate the ambiguity, we express in grammar
o (precedence) bind * tighter than +
» 14 2% 3 is always parsed by 1 + (2 * 3)
o (associativity) * and + associate to the left
» 14 24 3is always parsed by (1 4+2) + 3
An unambiguous grammar:

E—SE+4+T|T
T >Tx*F|F
F —id | (E)

@ parse treefor1 4+ 2+ 3
@ parse tree for 1 + 2 % 3

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 16 / 20

Exercise

Transform the grammar

ESE+T|T
T >TxF|F
F —id | (E)

so that * associate to the right.

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 17 /20

Eliminating Left-Recursion

A grammar is left-recursive if it has a non-terminal A such that there A
appears as the first right-hand-side symbol in an A-production, e.g.,

E—-E+T|T
To eliminate left-recursion, rewrite the grammar using right recursion:
E—->TEF

FE — +TEF
E — €

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 18 / 20

Left Factoring

The grammar
S — if E then S else S
S — if E then S

has rules with the same prefix. We can left factor the grammar as follows:

S —if £ then S X
X — €
X —else S

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 19 /20

Summary

@ The syntax of a programming language is usually specified by
context-free grammars.

@ Basic definitions and terminologies: context-free grammar, derivation,
left /rightmost derivations, parse tree, ambiguous/unambiguous
grammar, grammar transformation (eliminating ambiguity, eliminating
left-recursion, left factoring)

Hakjoo Oh COSE312 2015 Fall, Lecture 6 September 22, 2015 20 / 20

