COSE312: Compilers Lecture 5 — Lexical Analysis (4)

Hakjoo Oh 2015 Fall

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

From NFA to DFA

Transform an NFA

$$(N,\Sigma,\delta_N,n_0,N_A)$$

into an equivalent DFA

$$(D, \Sigma, \delta_D, d_0, D_A).$$

Running example:

ϵ -Closures

 ϵ -closure(I): the set of states reachable from I without consuming any symbols.

$$\begin{array}{lll} \epsilon\text{-closure}(\{1\}) &=& \{1,2,3,4,6,9\} \\ \epsilon\text{-closure}(\{1,5\}) &=& \{1,2,3,4,6,9\} \cup \{3,4,5,6,8,9\} \end{array}$$

Subset Construction

- Input: an NFA $(N, \Sigma, \delta_N, n_0, N_A)$.
- Output: a DFA $(D, \Sigma, \delta_D, d_0, D_A)$.
- Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $d \in D$ is a set of NFA state, i.e., $d \subseteq N$.

Running Example (1/5)

The initial DFA state $d_0 = \epsilon$ -closure $(\{0\}) = \{0\}$.

$$\mathsf{start} \longrightarrow \fbox{0}$$

Running Example (2/5)

For the initial state S, consider every $x\in\Sigma$ and compute the corresponding next states:

Running Example (3/5)

For the state $\{1, 2, 3, 4, 6, 9\}$, compute the next states:

Running Example (4/5)

Compute the next states of $\{3, 4, 5, 6, 8, 9\}$:

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,a)) = \emptyset$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\}$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\}$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$c$$

$$\{3,4,6,7,8,9\}$$

Running Example (5/5)

Compute the next states of $\{3, 4, 6, 7, 8, 9\}$:

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,a)) = \emptyset$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\}$$

$$\epsilon \text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\}$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$\{3,4,5,6,8,9\}$$

$$b$$

$$c$$

$$\{3,4,6,7,8,9\}$$

$$c$$

$$\{3,4,6,7,8,9\}$$

$$c$$

Subset Construction Algorithm

Algorithm 1 Subset construction

Input: An NFA $(N, \Sigma, \delta_N, n_0, N_A)$ **Output:** An equivalent DFA $(D, \Sigma, \delta_D, d_0, D_A)$ $d_0 = \epsilon$ -closure($\{n_0\}$) $D = \{d_0\}$ $W = \{d_0\}$ while $W \neq \emptyset$ do remove q from Wfor $c \in \Sigma$ do $t = \epsilon$ -closure $(\bigcup_{s \in a} \delta(s, c))$ $\delta_D(q,c) = t$ if $t \notin D$ then $D = D \cup \{t\}$ $W = W \cup \{t\}$ end if end for end while $D_A = \{ q \in D \mid q \cap N_A \neq \emptyset \}$

Running Example (1/5)

The initial state $d_0 = \epsilon$ -closure($\{0\}$) = $\{0\}$. Initialize D and W:

$$D = \{\{0\}\}, \qquad W = \{\{0\}\}$$

Running Example (2/5)

Choose $q = \{0\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	c
{0}	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}\}, \qquad W = \{\{1, 2, 3, 4, 6, 9\}\}$

Running Example (3/5)

Choose $q = \{1, 2, 3, 4, 6, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	с
$\{0\}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

Update D and W:

 $D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$ $W = \{\{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

Running Example (4/5)

Choose $q = \{3, 4, 5, 6, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	c	b	a	
	Ø	Ø	$\{1, 2, 3, 4, 6, 9\}$	$\{0\}$
$8, 9\}$	$\{3, 4, 6, 7, 8$	$\{3,4,5,6,8,9\}$	Ø	$\{1,2,3,4,6,9\}$
$8,9\}$	$\{3, 4, 6, 7, 8$	$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$
8	$\{3, 4, 6, 7, 8\}$	$\{3, 4, 5, 6, 8, 9\}$	Ø	$\{3,4,5,6,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$
$$W = \{\{3, 4, 6, 7, 8, 9\}\}$$

Running Example (5/5)

Choose $q = \{3, 4, 6, 7, 8, 9\}$ from W. For all $c \in \Sigma$, update δ_D :

	a	b	С
{0}	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

 \boldsymbol{D} and \boldsymbol{W} :

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

$$W = \emptyset$$

The while loop terminates. The accepting states:

 $D_A = \{\{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$

Algorithm for computing ϵ -Closures

• The definition

 ϵ -closure(I) is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

- To be formal and constructive,
 - **1** define ϵ -closure(I) by inductive definition,
 - Output the set by fixed point computation.

Inductive Definition

Let I be a set of NFA states. The ϵ closure, $T = \epsilon$ -closure(I), is the smallest set that satisfies the two conditions:

 $I \subseteq T.$

 $\hbox{ If } S \subseteq T \text{, then } \bigcup_{s \in S} \delta(s, \epsilon) \subseteq T.$

or alternatively, $T = \epsilon$ -closure(I) is the smallest set that satisfies the two conditions.

$$\bigcirc I \subseteq T$$

$$\bigcirc \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T.$$

or alternatively, $T = \epsilon$ -closure(I) is the smallest set such that

$$I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T.$$

The inductively defined set can be computed by formulating the set by a *least fixed point* of a function F, and compute the least fixed point via *fixed point iteration*.

Hakjoo Oh

Least Fixed Point

• F: a function defined over sets: e.g.,

•
$$F_1(X) = X \cup \{1, 2, 3\}$$

•
$$F_2(X) = X = \{1, 2\}$$

• A set X is a (pre-)fixed point of F if

$$X \supseteq F(X).$$

• fix F: the least fixed point of F, i.e.,

•
$$fix F \supseteq F(fix F)$$

$$\blacktriangleright X \supseteq \overline{F}(X) \implies X \supseteq fixF$$

• fixF can be computed by the algorithm:

$$T = \emptyset$$

repeat
$$T' = T$$

$$T = T' \cup F(T')$$

until $T = T'$

Computing ϵ -Closures

To compute $T = \epsilon$ -closure(I),

- **(**) define a function F such that T = fixF, and
- **2** compute fixF by fixed point iteration.

Computing ϵ -Closures

1. The inductive definition:

 $T = \epsilon\text{-}\mathsf{closure}(I)$ is the smallest set such that

$$I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T.$$

can be re-stated by:

 $T = \epsilon$ -closure(I) is the smallest set such that $T \supseteq F(T)$ where $F(X) = I \cup ig(igcup_{s \in X} \delta(s, \epsilon)ig).$

Thus, T = fixF.

Computing ϵ -Closures

2. Compute fixF via fixed point iteration algorithm:

$$egin{aligned} T &= \emptyset \ ext{repeat} \ T' &= T \ T &= T' \cup F(T') \ ext{until } T &= T' \end{aligned}$$

 $\text{ex}) \; \epsilon\text{-closure}(\{1\})$

Iteration	T'	T
1	Ø	{1}
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1, 2, 3, 9\}$
4	$\{1, 2, 3, 9\}$	$\{1,2,3,4,6,9\}$
5	$\{1,2,3,4,6,9\}$	$\{1,2,3,4,6,9\}$

cf) Computer Science is full of fixed points

Every inductively defined set is defined by fixed points.

• The set $N = \{0, 1, 2, 3, \ldots\}$ of natural numbers can be defined by a least fixed point

$$N = fixF.$$

What is **F**?

• Let $G = (N, \rightarrow)$ be a graph, where N is the set of nodes and $(\rightarrow) \subseteq N \times N$ denotes edges. Let $I \subseteq N$ be a set of initial nodes. The set R_I of all nodes reachable from I can be defined by a least fixed point:

$$R_I = fixF$$

What is **F**?

Recall the fixed point algorithm:

$$T = \emptyset$$

repeat
 $T' = T$
 $T = T' \cup F(T')$
until $T = T'$

and the computation of ϵ -closure({1}):

Iteration	T'	T
1	Ø	{1}
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1, 2, 3, 9\}$
4	$\{1, 2, 3, 9\}$	$\{1,2,3,4,6,9\}$
5	$\{1, 2, 3, 4, 6, 9\}$	$\{1,2,3,4,6,9\}$

The algorithm involves many redundant computations.

• The first iteration:

$$F(\emptyset) = \{1\} \cup ig(igcup_{s \in \emptyset} \delta(s,\epsilon)ig) = \{1\}$$

• The second iteration:

$$F(\{1\})=\{1\}\cupig(igcup_{s\in\{1\}}\delta(s,\epsilon)ig)=\{1\}\cup\delta(1,\epsilon)$$

The third iteration:

$$F(\{1,2\})=\{1\}\cupig(igcup_{s\in\{1,2\}}\delta(s,\epsilon)ig)=\{1\}\cup\delta(1,\epsilon)\cup\delta(2,\epsilon)$$

• The fourth iteration:

$$\begin{array}{lll} F(\{1,2,3,9\}) &=& \{1\} \cup \left(\bigcup_{s \in \{1,2,3,9\}} \delta(s,\epsilon) \right) \\ &=& \{1\} \cup \delta(1,\epsilon) \cup \delta(2,\epsilon) \cup \delta(3,\epsilon) \cup \delta(9,\epsilon) \end{array}$$

• The fifth iteration:

$$\begin{split} F(\{1,2,3,4,6,9\}) \\ &= \{1\} \cup \left(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,\epsilon) \right) \\ &= \{1\} \cup \delta(1,\epsilon) \cup \delta(2,\epsilon) \cup \delta(3,\epsilon) \cup \delta(4,\epsilon) \cup \delta(6,\epsilon) \cup \delta(9,\epsilon) \end{split}$$

The worklist algorithm can compute fixed points with less redundancies:

```
Input: A set I of initial states.
Output: T = \epsilon-closure(I)
T = I
W = I
while W \neq \emptyset do
  remove a state q from W
  S = \delta(q, \epsilon)
  for s \in S do
     if s \notin T then
       T = T \cup \{s\}
        W = W \cup \{s\}
     end if
  end for
end while
```

- T and W are initially $T = W = \{1\}$.
- Choose 1 and compute $\delta(1,\epsilon)=\{2\}$. Add 2 to T and W:

$$T = \{1,2\}, \quad W = \{2\}$$

• Choose 2 and compute $\delta(2,\epsilon)=\{3,9\}$. Add them to T and W:

$$T = \{1, 2, 3, 9\}, \quad W = \{3, 9\}$$

• Choose 3 and compute $\delta(3,\epsilon)=\{4,6\}$. Add them to T and W: $T=\{1,2,3,4,6,9\}, \quad W=\{4,6,9\}$

• Choose 4 and compute $\delta(4,\epsilon)=\emptyset$. Nothing is added.

$$T = \{1, 2, 3, 4, 6, 9\}, \quad W = \{6, 9\}$$

• Choose 6 and compute $\delta(6,\epsilon) = \emptyset$. Nothing is added.

$$T = \{1, 2, 3, 4, 6, 9\}, \quad W = \{9\}$$

• Choose 9 and compute $\delta(9,\epsilon) = \emptyset$. Nothing is added.

$$T = \{1, 2, 3, 4, 6, 9\}, \quad W = \{\}$$

The worklist is empty and the algorithm terminates.

Hakjoo Oh

Summary

Subset construction:

- Goal: convert an NFA to an equivalent DFA
- Key idea: simulate the NFA by considering every possibility at once

 ϵ -closures:

- defined by least fixed points
- computed by fixed point algorithms
 - naitve iterative algorithm
 - worklist algorithm