COSE312: Compilers

Lecture 5 - Lexical Analysis (4)

Hakjoo Oh
2015 Fall

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

From NFA to DFA

Transform an NFA

$$
\left(N, \Sigma, \delta_{N}, n_{0}, N_{A}\right)
$$

into an equivalent DFA
$\left(D, \Sigma, \delta_{D}, d_{0}, D_{A}\right)$.
Running example:

ϵ-Closures

$\boldsymbol{\epsilon}$-closure($\boldsymbol{I})$: the set of states reachable from \boldsymbol{I} without consuming any symbols.

ϵ-closure $(\{1\})=\{1,2,3,4,6,9\}$
ϵ-closure $(\{1,5\})=\{1,2,3,4,6,9\} \cup\{3,4,5,6,8,9\}$

Subset Construction

- Input: an NFA $\left(\boldsymbol{N}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\boldsymbol{N}}, \boldsymbol{n}_{\mathbf{0}}, \boldsymbol{N}_{\boldsymbol{A}}\right)$.
- Output: a DFA $\left(\boldsymbol{D}, \boldsymbol{\Sigma}, \delta_{D}, d_{0}, D_{A}\right)$.
- Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $\boldsymbol{d} \in \boldsymbol{D}$ is a set of NFA state, i.e., $\boldsymbol{d} \subseteq \boldsymbol{N}$.

Running Example $(1 / 5)$

The initial DFA state $d_{0}=\epsilon$-closure $(\{0\})=\{0\}$.

Running Example $(2 / 5)$

For the initial state \boldsymbol{S}, consider every $\boldsymbol{x} \in \boldsymbol{\Sigma}$ and compute the corresponding next states:

$$
\epsilon \text {-closure }\left(\bigcup_{s \in S} \delta(s, a)\right)
$$

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, a)\right)=\{1,2,3,4,6,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, b)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{0\}} \delta(s, c)\right)=\emptyset
\end{aligned}
$$

Running Example $(3 / 5)$

For the state $\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{9}\}$, compute the next states:

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{1,2,3,4,6,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$

Running Example $(4 / 5)$

Compute the next states of $\{\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{8}, \mathbf{9}\}$:

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,5,6,8,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$

Running Example $(5 / 5)$

Compute the next states of $\{\mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{7}, 8,9\}$:

$$
\begin{aligned}
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, a)\right)=\emptyset \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, b)\right)=\{3,4,5,6,8,9\} \\
& \epsilon \text {-closure }\left(\bigcup_{s \in\{3,4,6,7,8,9\}} \delta(s, c)\right)=\{3,4,6,7,8,9\}
\end{aligned}
$$

Subset Construction Algorithm

```
Algorithm 1 Subset construction
    Input: An NFA \(\left(N, \Sigma, \delta_{N}, n_{0}, N_{A}\right)\)
    Output: An equivalent DFA \(\left(D, \Sigma, \delta_{D}, d_{0}, D_{A}\right)\)
    \(d_{0}=\epsilon\)-closure \(\left(\left\{n_{0}\right\}\right)\)
    \(D=\left\{d_{0}\right\}\)
    \(W=\left\{d_{0}\right\}\)
    while \(W \neq \emptyset\) do
        remove \(q\) from \(W\)
        for \(c \in \Sigma\) do
            \(t=\epsilon\)-closure \(\left(\bigcup_{s \in q} \delta(s, c)\right)\)
            \(\delta_{D}(q, c)=t\)
            if \(t \notin D\) then
                \(D=D \cup\{t\}\)
                \(W=W \cup\{t\}\)
            end if
        end for
    end while
    \(D_{A}=\left\{q \in D \mid q \cap N_{A} \neq \emptyset\right\}\)
```


Running Example $(1 / 5)$

The initial state $\boldsymbol{d}_{\mathbf{0}}=\epsilon$-closure $(\{0\})=\{0\}$. Initialize \boldsymbol{D} and \boldsymbol{W} :

$$
D=\{\{0\}\}, \quad W=\{\{0\}\}
$$

Running Example $(2 / 5)$
Choose $\boldsymbol{q}=\{0\}$ from \boldsymbol{W}. For all $\boldsymbol{c} \in \boldsymbol{\Sigma}$, update $\boldsymbol{\delta}_{\boldsymbol{D}}$:

	a	b	c
$\{0\}$	$\{1,2,3,4,6,9\}$	\emptyset	\emptyset

Update \boldsymbol{D} and \boldsymbol{W} :

$$
D=\{\{0\},\{1,2,3,4,6,9\}\}, \quad W=\{\{1,2,3,4,6,9\}\}
$$

Running Example $(3 / 5)$

Choose $q=\{1,2,3,4,6,9\}$ from W. For all $c \in \Sigma$, update δ_{D} :

	a	b	c
$\{0\}$	$\{1,2,3,4,6,9\}$	\emptyset	\emptyset
$\{1,2,3,4,6,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

Update \boldsymbol{D} and \boldsymbol{W} :
$D=\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$
$W=\{\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$

Running Example $(4 / 5)$

Choose $q=\{3,4,5,6,8,9\}$ from W. For all $c \in \Sigma$, update δ_{D} :

	a	b	c
$\{0\}$	$\{1,2,3,4,6,9\}$	\emptyset	\emptyset
$\{1,2,3,4,6,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

\boldsymbol{D} and \boldsymbol{W} :
$D=\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}$
$W=\{\{3,4,6,7,8,9\}\}$

Running Example $(5 / 5)$

Choose $\boldsymbol{q}=\{\mathbf{3}, 4, \mathbf{6}, \mathbf{7}, 8,9\}$ from \boldsymbol{W}. For all $\boldsymbol{c} \in \boldsymbol{\Sigma}$, update δ_{D} :

	a	b	c
$\{0\}$	$\{1,2,3,4,6,9\}$	\emptyset	\emptyset
$\{1,2,3,4,6,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	\emptyset	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

\boldsymbol{D} and \boldsymbol{W} :

$$
\begin{aligned}
D & =\{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\} \\
W & =\emptyset
\end{aligned}
$$

The while loop terminates. The accepting states:

$$
D_{A}=\{\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\}
$$

Algorithm for computing ϵ-Closures

- The definition
ϵ-closure (\boldsymbol{I}) is the set of states reachable from \boldsymbol{I}
without consuming any symbols.
is neither formal nor constructive.
- To be formal and constructive,
(1) define ϵ-closure (I) by inductive definition,
(2) compute the set by fixed point computation.

Inductive Definition

Let \boldsymbol{I} be a set of NFA states. The $\boldsymbol{\epsilon}$ closure, $\boldsymbol{T}=\boldsymbol{\epsilon}$-closure (\boldsymbol{I}), is the smallest set that satisfies the two conditions:
(1) $I \subseteq T$.
(2) If $S \subseteq T$, then $\bigcup_{s \in S} \delta(s, \epsilon) \subseteq T$.
or alternatively, $\boldsymbol{T}=\boldsymbol{\epsilon}$-closure (\boldsymbol{I}) is the smallest set that satisfies the two conditions.
(1) $I \subseteq T$.
(2) $\bigcup_{s \in T} \delta(s, \epsilon) \subseteq T$.
or alternatively, $\boldsymbol{T}=\boldsymbol{\epsilon}$-closure (\boldsymbol{I}) is the smallest set such that

$$
I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T
$$

The inductively defined set can be computed by formulating the set by a least fixed point of a function \boldsymbol{F}, and compute the least fixed point via fixed point iteration.

Least Fixed Point

- \boldsymbol{F} : a function defined over sets: e.g.,
- $F_{1}(X)=X \cup\{1,2,3\}$
- $F_{2}(X)=X=\{\mathbf{1}, \mathbf{2}\}$
- A set \boldsymbol{X} is a (pre-)fixed point of \boldsymbol{F} if

$$
X \supseteq F(X)
$$

- fixF: the least fixed point of \boldsymbol{F}, i.e.,
- $f i x F \supseteq F(f i x F)$
- $\boldsymbol{X} \supseteq \boldsymbol{F}(\boldsymbol{X}) \Longrightarrow \boldsymbol{X} \supseteq \boldsymbol{f i x} \boldsymbol{F}$
- $\boldsymbol{f i x} \boldsymbol{F}$ can be computed by the algorithm:

$$
\begin{aligned}
& T=\emptyset \\
& \text { repeat } \\
& \quad T^{\prime}=T \\
& T=T^{\prime} \cup F\left(T^{\prime}\right) \\
& \text { until } T=T^{\prime}
\end{aligned}
$$

Computing ϵ-Closures

To compute $\boldsymbol{T}=\boldsymbol{\epsilon}$-closure (\boldsymbol{I}),
(1) define a function \boldsymbol{F} such that $\boldsymbol{T}=\mathrm{fix} \boldsymbol{F}$, and
(2) compute $f i x \boldsymbol{F}$ by fixed point iteration.

Computing ϵ-Closures

1. The inductive definition:
$\boldsymbol{T}=\epsilon$-closure (\boldsymbol{I}) is the smallest set such that

$$
I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T
$$

can be re-stated by:

$$
\boldsymbol{T}=\boldsymbol{\epsilon} \text {-closure }(\boldsymbol{I}) \text { is the smallest set such that }
$$

$$
\begin{gathered}
T \supseteq F(T) \\
\text { where } \\
F(X)=I \cup\left(\bigcup_{s \in X} \delta(s, \epsilon)\right) .
\end{gathered}
$$

Thus, $\boldsymbol{T}=\boldsymbol{f i x F}$.

Computing ϵ-Closures

2. Compute $\boldsymbol{f i x} \boldsymbol{F}$ via fixed point iteration algorithm:

$$
\begin{aligned}
& T=\emptyset \\
& \text { repeat } \\
& \quad T^{\prime}=T \\
& T=T^{\prime} \cup F\left(T^{\prime}\right) \\
& \text { until } T=T^{\prime}
\end{aligned}
$$

ex) $\boldsymbol{\epsilon}$-closure $(\{1\})$

Iteration	\boldsymbol{T}^{\prime}	\boldsymbol{T}
1	\emptyset	$\{1\}$
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1,2,3,9\}$
4	$\{1,2,3,9\}$	$\{1,2,3,4,6,9\}$
5	$\{1,2,3,4,6,9\}$	$\{1,2,3,4,6,9\}$

cf) Computer Science is full of fixed points

Every inductively defined set is defined by fixed points.

- The set $N=\{\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots\}$ of natural numbers can be defined by a least fixed point

$$
N=f i x F
$$

What is \boldsymbol{F} ?

- Let $G=(N, \rightarrow)$ be a graph, where N is the set of nodes and $(\rightarrow) \subseteq N \times N$ denotes edges. Let $\boldsymbol{I} \subseteq \boldsymbol{N}$ be a set of initial nodes. The set $\boldsymbol{R}_{\boldsymbol{I}}$ of all nodes reachable from \boldsymbol{I} can be defined by a least fixed point:

$$
R_{I}=f i x F
$$

What is \boldsymbol{F} ?

Efficient Fixed Point Computation via Worklist Algorithm

Recall the fixed point algorithm:

$$
\begin{aligned}
& T=\emptyset \\
& \text { repeat } \\
& \quad T^{\prime}=T \\
& T=T^{\prime} \cup F\left(T^{\prime}\right) \\
& \text { until } T=T^{\prime}
\end{aligned}
$$

and the computation of ϵ-closure $(\{1\})$:

Iteration	T^{\prime}	T
1	\emptyset	$\{1\}$
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1,2,3,9\}$
4	$\{1,2,3,9\}$	$\{1,2,3,4,6,9\}$
5	$\{1,2,3,4,6,9\}$	$\{1,2,3,4,6,9\}$

Efficient Fixed Point Computation via Worklist Algorithm

The algorithm involves many redundant computations.

- The first iteration:

$$
F(\emptyset)=\{1\} \cup\left(\bigcup_{s \in \emptyset} \delta(s, \epsilon)\right)=\{1\}
$$

- The second iteration:

$$
F(\{1\})=\{1\} \cup\left(\bigcup_{s \in\{1\}} \delta(s, \epsilon)\right)=\{1\} \cup \delta(1, \epsilon)
$$

- The third iteration:

$$
F(\{1,2\})=\{1\} \cup\left(\bigcup_{s \in\{1,2\}} \delta(s, \epsilon)\right)=\{1\} \cup \delta(1, \epsilon) \cup \delta(2, \epsilon)
$$

- The fourth iteration:

$$
\begin{aligned}
F(\{1,2,3,9\}) & =\{1\} \cup\left(\cup_{s \in\{1,2,3,9\}} \delta(s, \epsilon)\right) \\
& =\{1\} \cup \delta(1, \epsilon) \cup \delta(2, \epsilon) \cup \delta(3, \epsilon) \cup \delta(9, \epsilon)
\end{aligned}
$$

Efficient Fixed Point Computation via Worklist Algorithm

- The fifth iteration:

$$
\begin{aligned}
& F(\{1,2,3,4,6,9\}) \\
& =\{1\} \cup\left(\cup_{s \in\{1,2,3,4,6,9\}} \delta(s, \epsilon)\right) \\
& =\{1\} \cup \delta(1, \epsilon) \cup \delta(2, \epsilon) \cup \delta(3, \epsilon) \cup \delta(4, \epsilon) \cup \delta(6, \epsilon) \cup \delta(9, \epsilon)
\end{aligned}
$$

Efficient Fixed Point Computation via Worklist Algorithm

The worklist algorithm can compute fixed points with less redundancies:

```
Input: A set \(I\) of initial states.
Output: \(T=\epsilon\)-closure \((I)\)
\(T=I\)
\(W=I\)
while \(W \neq \emptyset\) do
    remove a state \(q\) from \(W\)
    \(S=\delta(q, \epsilon)\)
    for \(s \in S\) do
        if \(s \notin T\) then
        \(T=T \cup\{s\}\)
        \(W=W \cup\{s\}\)
        end if
    end for
end while
```

- T and W are initially $T=W=\{1\}$.
- Choose 1 and compute $\delta(1, \epsilon)=\{2\}$. Add 2 to T and W :

$$
T=\{1,2\}, \quad W=\{2\}
$$

- Choose 2 and compute $\delta(2, \epsilon)=\{3,9\}$. Add them to T and W :

$$
T=\{1,2,3,9\}, \quad W=\{3,9\}
$$

- Choose 3 and compute $\delta(3, \epsilon)=\{4,6\}$. Add them to T and W :

$$
T=\{1,2,3,4,6,9\}, \quad W=\{4,6,9\}
$$

- Choose 4 and compute $\delta(4, \epsilon)=\emptyset$. Nothing is added.

$$
T=\{1,2,3,4,6,9\}, \quad W=\{6,9\}
$$

- Choose 6 and compute $\delta(6, \epsilon)=\emptyset$. Nothing is added.

$$
T=\{1,2,3,4,6,9\}, \quad W=\{9\}
$$

- Choose $\mathbf{9}$ and compute $\delta(\mathbf{9}, \boldsymbol{\epsilon})=\emptyset$. Nothing is added.

$$
T=\{1,2,3,4,6,9\}, \quad W=\{ \}
$$

The worklist is empty and the algorithm terminates.

Summary

Subset construction:

- Goal: convert an NFA to an equivalent DFA
- Key idea: simulate the NFA by considering every possibility at once ϵ-closures:
- defined by least fixed points
- computed by fixed point algorithms
- naitve iterative algorithm
- worklist algorithm

