COSE312: Compilers

Lecture 5 — Lexical Analysis (4)

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 1/29

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

RE NFA

Thompson’s subset
construction construction

DFA

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 2 /29

From NFA to DFA

Transform an NFA
(Nv 27 6N7 o, NA)

into an equivalent DFA

(D’ E’ 5D’ d09 DA)-

Running example:

a €
start e@—@—

Hakjoo Oh

COSE312 2015 Fall, Lecture 5

September 14, 2015

@{/\ro

3/29

e-Closures

e-closure(I): the set of states reachable from I without consuming any
symbols.

a €
start é@—@—

eclosure({1}) = {
e-closure({1,5}) = {1,2,3,4,

U{3,4,5,6,8,9}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 4/29

Subset Construction

@ Input: an NFA (N, X,0n, 710, Na).

e Output: a DFA (D, X,0p,do, Da).

@ Key Idea: the DFA simulates the NFA by considering every possibility
at once. A DFA state d € D is a set of NFA state, i.e., d C N.

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 5/29

Running Example (1/5)
The initial DFA state dp = e-closure({0}) = {0}.

start — @

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 6 /29

Running Example (2/5)
For the initial state S, consider every € 3 and compute the
corresponding next states:

e-closure(U d(s,a)).

sEeS

e-closure(,c 03 0(s,a)) = {1,2,3,4,6,9}
e-closure(U,c gy 9(s,0)) = 0
e-closure(Use 01 9(s,¢)) = 0

a
start —>

September 14, 2015 7 /29

Hakjoo Oh COSE312 2015 Fall, Lecture 5

Running Example (3/5)
For the state {1, 2, 3,4,6,9}, compute the next states:

e—closure(US€{1,2’3,4,6,9} d(s,a)) =10
e—closure(US€{1,2,37476,9} d(s,b)) ={3,4,5,6,8,9}
e—closure(US€{1,2,3,4,6,9} d(s,c)) =43,4,6,7,8,9}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 8 /29

Running Example (4/5)
Compute the next states of {3,4,5,6,8,9}:

e—closure(US€{3,4’5,6,8,9} d(s,a)) =10
e—closure(US€{3,4,57678,9} d(s,b)) ={3,4,5,6,8,9}
e—closure(US€{3,4,5,6,8,9} d(s,c)) =43,4,6,7,8,9}

a
start *>

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 9 /29

Running Example (5/5)
Compute the next states of {3,4,6,7,8,9}:

e—closure(US€{3,4’6,7,8,9} d(s,a)) =10
e—closure(US€{3,4,67778,9} d(s,b)) ={3,4,5,6,8,9}
e—closure(US€{3,4,6,7,8,9} d(s,c)) =43,4,6,7,8,9}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 10 / 29

Subset Construction Algorithm

Algorithm 1 Subset construction
Input: An NFA (N, X, 6n,n0, Na)
Output: An equivalent DFA (D, X, dp,do,Da)
do = e-closure({no})

D = {do}
W = {do}
while W # () do
remove q from W
for ce Y do
t = e-closure({, ¢, 6(s,c))
ép(g,c) =t
if t € D then
D =DuU({t}
W =W U({t}
end if
end for
end while
Da={qeD|qgnNa#0}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 1 /29

Running Example (1/5)

s ozox @i/\t

The initial state dg = e-closure({0}) = {0}. Initialize D and W:

D = {{o}}, W ={{0}}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 12 /29

Running Example (2/5)
Choose ¢ = {0} from W. For all ¢ € 3, update dp:

a b ¢
{0} | {1,2,3,4,6,9} 0O 0

Update D and W:

D = {{0},{1,2,3,4,6,9}}, W = {{1,2,3,4,6,9}}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 13 /29

Running Example (3/5)
Choose q = {1,2,3,4,6,9} from W. For all ¢ € ¥, update dp:

a b c
{0} {1,2,3,4,6,9} 0 0
{1,2,3,4,6,9} 0 {3,4,5,6,8,9} {3,4,6,7,8,9}
Update D and W:
D = {{o0},{1,2,3,4,6,9},{3,4,5,6,8,9},{3,4,6,7,8,9}}
W - {{3’ 47 57 6’ 87 9}’ {37 47 6’ 77 9 }}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 14 /29

Running Example (4/5)
Choose q = {3,4,5,6,8,9} from W. For all ¢ € ¥, update dp:

a b c
{0} {1,2,3,4,6,9} 0 0
{1,2,3,4,6,9} 0 {3,4,5,6,8,9} {3,4,6,7,8,9}
{3,4,5,6,8,9} 0 {3,4,5,6,8,9} {3,4,6,7,8,9}
D and W:
D = {{O}, {1, 2,3,4,6, 9}, {3, 4,5,6,8, 9}, {3, 4,6,7,8, 9}}

w = {{3,4,6,7,8,9}}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 15 /29

Running Example (5/5)
Choose q = {3,4,6,7,8,9} from W. For all ¢ € ¥, update dp:

a b c
{0} {1,2,3,4,6,9} 0 0
{1,2,3,4,6,9} 0 {3,4,5,6, 8, 9} {3,4,6,7, 8, 9}
{3,4,5,6,8,9} 0 {3,4,5,6,8,9} {3,4,6,7,8,9}
{3,4,6,7,8,9} 0 {3,4,5,6,8,9} {3,4,6,7,8,9}
D and W:
D = {{o0},{1,2,3,4,6,9},{3,4,5,6,8,9},{3,4,6,7,8,9}}
W = 0

The while loop terminates. The accepting states:

Da ={{1,2,3,4,6,9},{3,4,5,6,8,9},{3,4,6,7,8,9}}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 16 / 29

Algorithm for computing e-Closures

@ The definition

e-closure(I) is the set of states reachable from I
without consuming any symbols.

is neither formal nor constructive.
@ To be formal and constructive,

@ define e-closure(I) by inductive definition,
@ compute the set by fixed point computation.

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 17 /29

Inductive Definition

Let I be a set of NFA states. The € closure, T = e-closure(I), is the
smallest set that satisfies the two conditions:

QICT.
Q If SCT,then |J,c50(s,€) CT.

or alternatively, T' = e-closure(I) is the smallest set that satisfies the two
conditions.

QICT.
o UseT d(s,e) CT.

or alternatively, T' = e-closure(I) is the smallest set such that

Iu U d(s,e) CT.
seT

The inductively defined set can be computed by formulating the set by a
least fixed point of a function F', and compute the least fixed point via
fixed point iteration.

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 18 /29

Least Fixed Point

o F: a function defined over sets: e.g.,
» Fi(X) =X U({1,2,3}
» F(X) =X ={1,2}

e A set X is a (pre-)fixed point of F if
X D F(X).

o fixF': the least fixed point of F', i.e.,
> fixF D F(ficF)
» X DF(X) = X D fizF
@ fizF' can be computed by the algorithm:

T=0
repeat

T =T

T=T UF(T
until T' = T

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 19 /29

Computing e-Closures

To compute T = e-closure(I),
@ define a function F such that T' = fiz F', and
@ compute fiz F' by fixed point iteration.

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 20 /29

Computing e-Closures

1. The inductive definition:

T = e-closure([I) is the smallest set such that

Iu U d(s,e) CT.
seT

can be re-stated by:

T = e-closure(I) is the smallest set such that
T D F(T)
where

F(X)=TU(] 8(s,e)).

seX

Thus, T = fizF.
Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 21 /29

Computing e-Closures

2. Compute fix F' via fixed point iteration algorithm:

T=0
repeat
T =T
T =T UF(T)
until T = T’
ex) e-closure({1})
Iteration T T
1 1] {1}
2 {1} {1,2}
3 {1,2} {1,2,3,9}
4 {1,2,3,9} {1,2,3,4,6,9}
5 {1,2,3,4,6,9} {1,2,3,4,6,9}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 22 /29

cf) Computer Science is full of fixed points

Every inductively defined set is defined by fixed points.

@ Theset N = {0,1,2,3,...} of natural numbers can be defined by
a least fixed point
N = fixF.

What is F'?

o Let G = (N, —) be a graph, where N is the set of nodes and
(—) € N X N denotes edges. Let I C N be a set of initial nodes.
The set Ry of all nodes reachable from I can be defined by a least
fixed point:
Ry = fixF

What is F'?

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 23 /29

Efficient Fixed Point Computation via Worklist Algorithm

Recall the fixed point algorithm:

T=0
repeat

T =T

T=T UF(T
until T = T’

and the computation of e-closure({1}):

Iteration T T
1 0 {1}
2 {1} {1,2}
3 {1,2} {1,2,3,9}
4 {1,2,3,9} {1,2,3,4,6,9}
5 {1,2,3,4,6,9} {1,2,3,4,6,9}

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 24 /29

Efficient Fixed Point Computation via Worklist Algorithm

The algorithm involves many redundant computations.
@ The first iteration:

F@©)={1}u(|Jd(s,e) ={1}
sen
@ The second iteration:
F({1}) ={1}u (|J 6(s,e)) = {1} Ud(1,¢)
se{1}
@ The third iteration:
F({1,2}) = {1} u (U 8(s,e)) = {1} U d(1,€) U(2,¢)
se{1,2}

@ The fourth iteration:

F({la 2,3, 9}) = {1} U (Use{1,2,3,9} (s, 6))
= {1} Ud(1,e) Ud(2,€) Ud(3,e) Ud(9,€)

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 25 /29

Efficient Fixed Point Computation via Worklist Algorithm

@ The fifth iteration:

F({1,2,3,4,6,9})

={1}u (Us€{1,2,3,4,6,9} (s, ¢€))
={1}Ud6(1,e) Ud(2,e) UH(3,€) Ud(4,€) Ud(6,€) U(9,¢€)

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 26 / 29

Efficient Fixed Point Computation via Worklist Algorithm
The worklist algorithm can compute fixed points with less redundancies:

Input: A set I of initial states.
Output: T = e-closure([])
T=1
W=1
while W # () do
remove a state ¢ from W
S =10(q,e)
for s € S do
if s ¢ T then
T =TU({s}
W= Wu{s}
end if
end for
end while

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 27 /29

T and W are initially T'= W = {1}.
Choose 1 and compute d(1,€) = {2}. Add 2 to T" and W:

T ={1,2}, W={2}
@ Choose 2 and compute §(2,€) = {3,9}. Add them to T and W:
T=1{1,2,3,9}, W ={3,9}
Choose 3 and compute 6(3,€) = {4,6}. Add them to T' and W:
T =1{1,2,3,4,6,9}, W = {4,6,9}
@ Choose 4 and compute (4, €) = 0. Nothing is added.
T=1{1,2,3,4,6,9}, W = {6,9}
Choose 6 and compute (6, €) = 0. Nothing is added.
T =1{1,2,3,4,6,9}, W = {9}
@ Choose 9 and compute §(9, €) = 0. Nothing is added.
T={1,2,3,4,6,9}, W ={}

The worklist is empty and the algorithm terminates.
September 14, 2015 28 / 29

Summary

Subset construction:

@ Goal: convert an NFA to an equivalent DFA

o Key idea: simulate the NFA by considering every possibility at once
e-closures:

o defined by least fixed points
@ computed by fixed point algorithms

> naitve iterative algorithm
» worklist algorithm

Hakjoo Oh COSE312 2015 Fall, Lecture 5 September 14, 2015 29 /29

