COSE312: Compilers Lecture 4 — Lexical Analysis (3)

Hakjoo Oh 2015 Fall

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

From REs to NFAs

Transform a given regular expression into a semantically equivalent NFAs:

An instance of "compilation":

- The source language is regular expressions and the target language is NFAs.
- The correctness is defined by the equivalence of the denoted languages.

Principles of Compilation

Every automatic compilation

- is done "compositionally", and
- 2 maintains some "invariants" during compilation.

ex) compilation of regular expressions, e.g., $R_1|R_2$:

- The compilation of $R_1|R_2$ is defined in terms of the compilation of R_1 and R_2 .
- ② Compiled NFAs for R_1 and R_2 satisfy the invariants:
 - an NFA has exactly only one accepting state,
 - no arcs into the initial state, and
 - no arcs out of the accepting state.

The Source Language

$$egin{array}{ccccc} R & o & \emptyset \ & | & \epsilon \ & | & a \in \Sigma \ & | & R_1 \mid R_2 \ & | & R_1 \cdot R_2 \ & | & R_1^* \ & | & (R) \end{array}$$

Base cases:

• $R = \epsilon$:

• $R = \emptyset$

• $R = a \ (\in \Sigma)$

Inductive cases:

- $R = R_1 | R_2$:
 - 1 Compile R_1 and R_2 :

2 Compile $R_1|R_2$ using the results:

• $R = R_1 \cdot R_2$:

 $\textcircled{0} Compile <math>R_1$ and R_2 :

2 Compile $R_1 \cdot R_2$ using the results:

• $R = R_1^*$: • Compile R_1 :

2 Compile R_1^* using the results:

Examples

- 0 · 1*:
- (0|1) 0 1:
- $(0|1)^* \cdot 1 \cdot (0|1)$:

Homework 1-1 (due: next class)

Prove that the compilation process is correct; for any regular expression R, the compiler produces an NFA N such that

$$L(R) = L(N).$$

Formally prove the equivalence by structural induction.