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Computer Revolution
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Stanford
Compilers

This course will discuss the major ideas used today in the
implementation of programming language compilers. You will learn
how a program written in a high-level language designed for humans is
systematically translated into a program written in low-level assembly
more suited to machines!

Preview Lectures

About the Course Sessions

This course will discuss the major ideas used today in the implementation of March 17, 2014 - June 2, 2014 a
programming language compilers, including lexical analysis, parsing, syntax-directed
translation, abstract syntax trees, types and type checking, intermediate languages,
dataflow analysis, program optimization, code generation, and runtime systems. As
a result, you will learn how a program written in a high-level language designed for
humans is systematically translated into a program written in low-level assembly

more suited to machines. Along the way we will also touch on how programming Course at a Glance
languages are designed, programming language semantics, and why there are so
many different kinds of programming languages. 3 11 weeks of study

i X © 810 hours/week, 10-20 hours/week with
The course lectures will be presented in short videos. To help you master the programming assignments

material, there will be in-lecture questions to answer, quizzes, and two exams: a @ English
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Computer Revolution

int enqueve ( Rueve 9. lvﬂ-\i
Node n%= new Node();
o.val =i;
anetd = noll;

if(g.head != null){
g.tail.next = n;

}

if(gq.head == null){
qg.head = n;

}
g.tail = n;

retoen 15
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The Origin of Computer Revolution
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The Origin of Computer Revolution

Church (1903-1995) Turing (1912-1954)

@ In 1936, Alonzo Church invented “Lambda calculus”, the origin of
programming languages.

@ In 1936, Alan Turing invented “Turing machine”, the origin of
computers.
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The Origin of Computer Revolution

-

ACM
A.M. TURING AWARD

=

@ Alan J. Perlis, John McCarthy, Edsger W. Dijkstra, Donald E. Knuth,
Dana S. Scott, John Backus, Robert W. Floyd, Kenneth E. lverson,
Tony Hoare, Stephen A. Cook, Niklaus Wirth, John Hopcroft, Robin
Milner, Amir Pnueli, Ole-Johan Dahl, Peter Naur, Frances E. Allen,
Alan Kay, Edmund M. Clarke, etc
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The Origin of Computer Revolution
What is most surprising in Turing's work?

The concept of “universal machine”.
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The Origin of Computer Revolution
What is most surprising in Turing's work?

The concept of “universal machine”.

@ We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.
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The Origin of Computer Revolution
What is most surprising in Turing's work?

The concept of “universal machine”.
@ We can design a Turing machine that can simulate an arbitrary

Turing machine on an arbitrary input.
» The set of Turing machines is closed in power.
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The Origin of Computer Revolution

What is most surprising in Turing's work?

The concept of “universal machine”.

@ We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

» The set of Turing machines is closed in power.

@ cf) The universal Turing machine is an interpreter:

program

input —

» An interpreter can simulate an arbitrary program for arbitrary input.
» The interpreter is just another program.

Interpreter

—— output

e What if computers/programming languages are not universal?
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The Origin of Computer Revolution

What is most surprising in Turing's work?

The concept of “universal machine”.

@ We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

» The set of Turing machines is closed in power.

@ cf) The universal Turing machine is an interpreter:

program

input —

» An interpreter can simulate an arbitrary program for arbitrary input.
» The interpreter is just another program.

Interpreter

—— output

e What if computers/programming languages are not universal?

@ Turing machine and lambda calculus appeared as byproducts of

mathematicians's dream.
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What Mathematicians Dreamed About

Leibniz (1646-1716) Hillbert (1862-1943)

o Hillbert's Entscheidungsproblem (1928 @ICM):

“Is there an algorithm to decide whether a given first-order statement
is provable from the axioms using the inference rules?”
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cf) Peano Arithmetic

Vocabulary:
¥ ={0,1,+,-,=}
Axioms:
Q V.~ (x+1=0)
QVz,yzx+l=y+1 — z=y
Q@ F[0] AN (Vz.Flz] — F[x+1]) — Vz.F[x]
QVz.x+0==x
QO Vr,yx+ (y+1)=(x+y)+1
Q Vrx-0=0
Q@ Ve,yx-(y+1)=z-y+=x
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cf) Peano Arithmetic

Theorem (Fermat's Last Theorem)
Ve,y,z,n.xt Z0 AN y#0 A z2#0 A n>2 — a:”—l—y";éz”J

@ Proposed by Fermat in 1637.
o Completely proved by Wiles in 1995.
o Can we automate the proof search? (Hillbert's program)
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Godel's Incompleteness Theorems (1931)

A complete and consistent set of axioms for all mathematics is impossible.

Kurt Godel (1906-1978)
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Direct Proofs by Turing and Church

In 1936, Alonzo Church and Alan Turing directly showed that a general
solution to the decision problem is impossible.

Hakjoo Oh
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AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER
THEORY.:

By Avoxzo Cvion.

1. Tntroduction. There is o clase of problems of clementary number
ey i b s n el 1 i 0 o 0 iy
cleiable funcion of 1 intogors, such that (2, 25, 72) =

e ecer and i oo bt of . ropoti o
clementary number theory involving ;2 -, 7 a8 froe variable.

An cxtmple of such a problem i the problem to find & means of do-
termining of any given positve intoger n whether o not there exist positive
intogers 2, 3,2, such that 2=+ y* = #%. For this may be nterproted,
o find an offctively calculable functon f, such that () s equa {0 2 if and
only if there exist positive integers 7, y, 7, such that 2° 4y = 5%, Clearly
the condition that the funcion 1 be efectively calulable is an essentil part
of the problem, since without it the problem becomes triiel.

Anofher cxtmple of & problem of this clas s, for instance, the problem
o eploy,t .  omple st of allcivly olnable invariaats of clowd

Aical manifolds under “This problemn
& prokiem of clementary number theory in view of the

can bo interprote

n
represent a closed throe-dimensional manifold, and the property of two sets
of incidenco matricos that they ropresent homeomorphic complexes, can both
be des purely number-theoretic terms. 11 we enumerate, in a straight-
orwand way, the sl of cilnce maties which reprvt ot
dimensional manifolds, it will then be immdiately provable that the problem
under consideration (to find a complete set of effctively calculable invariants
of closed three-dimensional manifolds) is equivalent to the problem, to find
an effetively caloulable function f of positive integers, such that (m, n)
equal to 2 if and only if the m-th st of incidence matricos and the n-th sct
of incidence matrices in the enumeration represent homeomorphic complexes
Other examples will readily oceur to the reader.
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Turing's Definition of Computation

B | I I 10| I I | | B
A

q0 1 q0 1 R

a0 ©|o a1 ][R

I Q| 1 |al| 1 |R

a3 ql ql B |q2| B L

q2 1 q3 0 L

q2 q3 1 q3 1 L

q3 B q4 B R

Examples:
@ A machine to compute the sequence 010101...
@ A machine to compute the sequence 001011011101111011111...
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Universal Turing Machine

™ B | input | B | output

UTM is a Turing machine that can simulate an arbitrary Turing machine
on an arbitrary input.
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Turing's Proof

@ Turing reduced the halting problem for Turing machines to the
decision problem.

@ H: the Turing machine that solves the halting problem
@ A: the Turing machine that solves the decision problem
oA — H
@ H is logically impossible:
I | Ix | I3

M| 1|10

M| 1|0 |1

Mz| 1|01
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cf) Static Analysis

Turing showed that static analysis in general is impossible.
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Church’s Definition of Computation

@ Lambda calculus:

> 8

xz.FE

E —
|
| E

&

e Computation (3-reduction):
(Az.E) E' — [z — E'|E

Example:
(Az.(Ay.(z v))) z = Ay.(z y)
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The Power of Lambda Calculus

true = At.Af.
false = AtAf.f
and = Ab.Ac.(b c false)
pair = Af.As.Ab.b f s
fst = Ap.p true
snd = Ap.p false
0 = As.\z.z
1 = As.Az.(s 2)
2 = As.Az.s (s z)
n = As.Az.s" z
plus = An.dm.As.Az.m s (n s z)
mult = Am.An.m (plus n) co
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Impacts on Programming Languages

“Lambda” is everywhere:

e Lisp, e.g., (lambda (x) (* x x))
ML, e.g., (fun x -> x * x)
JavaScript
Co#

Java8
C++11
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Church’s Proof

Church proved that there is no computable function which decides for two
given lambda calculus expressions whether they are equivalent or not.
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Church-Turing Thesis

EOnnDoDnDE
E —» =z
| Az.E = FARREIREE
o Q0 | 0 [al | 1 | R
EE I al [ 1 [a |1 [R
a3 al a | B |g2|B | L

@ Turing machine and lambda calculus are equally powerful.
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Future of Computer Science?
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Future of Computer Science?

vs.
Newton (1642-1726) Turing (1912-1954)

* N

VS.
Einstein (1879-1955)
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