
COSE312: Compilers

Lecture 20 — The Origin of Computer Revolution

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 1 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 2 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 3 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 4 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 5 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 6 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 7 / 26



Computer Revolution

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 8 / 26



The Origin of Computer Revolution

Church (1903-1995) Turing (1912-1954)

In 1936, Alonzo Church invented “Lambda calculus”, the origin of
programming languages.

In 1936, Alan Turing invented “Turing machine”, the origin of
computers.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 9 / 26



The Origin of Computer Revolution

Church (1903-1995) Turing (1912-1954)

In 1936, Alonzo Church invented “Lambda calculus”, the origin of
programming languages.

In 1936, Alan Turing invented “Turing machine”, the origin of
computers.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 9 / 26



The Origin of Computer Revolution

Alan J. Perlis, John McCarthy, Edsger W. Dijkstra, Donald E. Knuth,
Dana S. Scott, John Backus, Robert W. Floyd, Kenneth E. Iverson,
Tony Hoare, Stephen A. Cook, Niklaus Wirth, John Hopcroft, Robin
Milner, Amir Pnueli, Ole-Johan Dahl, Peter Naur, Frances E. Allen,
Alan Kay, Edmund M. Clarke, etc

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 10 / 26



The Origin of Computer Revolution

What is most surprising in Turing’s work?

The concept of “universal machine”.

We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

I The set of Turing machines is closed in power.

cf) The universal Turing machine is an interpreter:

I An interpreter can simulate an arbitrary program for arbitrary input.
I The interpreter is just another program.

What if computers/programming languages are not universal?

Turing machine and lambda calculus appeared as byproducts of
mathematicians’s dream.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 11 / 26



The Origin of Computer Revolution

What is most surprising in Turing’s work?

The concept of “universal machine”.

We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

I The set of Turing machines is closed in power.

cf) The universal Turing machine is an interpreter:

I An interpreter can simulate an arbitrary program for arbitrary input.
I The interpreter is just another program.

What if computers/programming languages are not universal?

Turing machine and lambda calculus appeared as byproducts of
mathematicians’s dream.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 11 / 26



The Origin of Computer Revolution

What is most surprising in Turing’s work?

The concept of “universal machine”.

We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

I The set of Turing machines is closed in power.

cf) The universal Turing machine is an interpreter:

I An interpreter can simulate an arbitrary program for arbitrary input.
I The interpreter is just another program.

What if computers/programming languages are not universal?

Turing machine and lambda calculus appeared as byproducts of
mathematicians’s dream.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 11 / 26



The Origin of Computer Revolution

What is most surprising in Turing’s work?

The concept of “universal machine”.

We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

I The set of Turing machines is closed in power.

cf) The universal Turing machine is an interpreter:

I An interpreter can simulate an arbitrary program for arbitrary input.
I The interpreter is just another program.

What if computers/programming languages are not universal?

Turing machine and lambda calculus appeared as byproducts of
mathematicians’s dream.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 11 / 26



The Origin of Computer Revolution

What is most surprising in Turing’s work?

The concept of “universal machine”.

We can design a Turing machine that can simulate an arbitrary
Turing machine on an arbitrary input.

I The set of Turing machines is closed in power.

cf) The universal Turing machine is an interpreter:

I An interpreter can simulate an arbitrary program for arbitrary input.
I The interpreter is just another program.

What if computers/programming languages are not universal?

Turing machine and lambda calculus appeared as byproducts of
mathematicians’s dream.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 11 / 26



What Mathematicians Dreamed About

Leibniz (1646-1716) Hillbert (1862-1943)

Hillbert’s Entscheidungsproblem (1928 @ICM):

“Is there an algorithm to decide whether a given first-order statement
is provable from the axioms using the inference rules?”

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 12 / 26



cf) Peano Arithmetic

Vocabulary:
Σ = {0, 1,+, ·,=}

Axioms:

1 ∀x.¬(x+ 1 = 0)

2 ∀x, y.x+ 1 = y + 1 =⇒ x = y

3 F [0] ∧ (∀x.F [x] =⇒ F [x+ 1]) =⇒ ∀x.F [x]

4 ∀x.x+ 0 = x

5 ∀x, y.x+ (y + 1) = (x+ y) + 1

6 ∀x.x · 0 = 0

7 ∀x, y.x · (y + 1) = x · y + x

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 13 / 26



cf) Peano Arithmetic

Theorem (Fermat’s Last Theorem)

∀x, y, z, n.x 6= 0 ∧ y 6= 0 ∧ z 6= 0 ∧ n > 2 =⇒ xn + yn 6= zn

Proposed by Fermat in 1637.

Completely proved by Wiles in 1995.

Can we automate the proof search? (Hillbert’s program)

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 14 / 26



Gödel’s Incompleteness Theorems (1931)

A complete and consistent set of axioms for all mathematics is impossible.

Kurt Gödel (1906-1978)

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 15 / 26



Direct Proofs by Turing and Church

In 1936, Alonzo Church and Alan Turing directly showed that a general
solution to the decision problem is impossible.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 16 / 26



Turing’s Definition of Computation

Examples:

A machine to compute the sequence 010101 . . .

A machine to compute the sequence 001011011101111011111 . . .

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 17 / 26



Universal Turing Machine

UTM is a Turing machine that can simulate an arbitrary Turing machine
on an arbitrary input.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 18 / 26



Turing’s Proof

Turing reduced the halting problem for Turing machines to the
decision problem.

H: the Turing machine that solves the halting problem

A: the Turing machine that solves the decision problem

A =⇒ H

H is logically impossible:

I1 I2 I3 · · ·
M1 1 1 0 · · ·
M2 1 0 1 · · ·
M3 1 0 1 · · ·
...

...
...

...

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 19 / 26



cf) Static Analysis

Turing showed that static analysis in general is impossible.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 20 / 26



Church’s Definition of Computation

Lambda calculus:
E → x
| λx.E
| E E

Computation (β-reduction):

(λx.E) E′ → [x 7→ E′]E

Example:
(λx.(λy.(x y))) z → λy.(z y)

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 21 / 26



The Power of Lambda Calculus

true = λt.λf.t
false = λt.λf.f
and = λb.λc.(b c false)
pair = λf.λs.λb.b f s

fst = λp.p true
snd = λp.p false

0 = λs.λz.z
1 = λs.λz.(s z)
2 = λs.λz.s (s z)
n = λs.λz.sn z

plus = λn.λm.λs.λz.m s (n s z)

mult = λm.λn.m (plus n) c0

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 22 / 26



Impacts on Programming Languages

“Lambda” is everywhere:

Lisp, e.g., (lambda (x) (* x x))

ML, e.g., (fun x -> x * x)

JavaScript

C#

Java8

C++11

. . .

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 23 / 26



Church’s Proof

Church proved that there is no computable function which decides for two
given lambda calculus expressions whether they are equivalent or not.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 24 / 26



Church-Turing Thesis

Turing machine and lambda calculus are equally powerful.

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 25 / 26



Future of Computer Science?

vs.
Newton (1642-1726) Turing (1912-1954)

vs.
Einstein (1879-1955)

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 26 / 26



Future of Computer Science?

vs.
Newton (1642-1726) Turing (1912-1954)

vs.
Einstein (1879-1955)

Hakjoo Oh COSE312 2015 Fall, Lecture 20 December 8, 2015 26 / 26


