## COSE312: Compilers

## Lecture 2 - Lexical Analysis (1)

Hakjoo Oh
2015 Fall

## Lexical Analysis


ex) Given a C program
float match0 (char *s) /* find a zero */
\{if (!strncmp(s, "0.0", 3))
return 0.0;
\}
the lexical analyzer returns the stream of tokens:
FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s) COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN RETURN REAL(0.0) SEMI RBRACE EOF

## Specification, Recognition, and Automation

(1) Specification: how to specify lexical patterns?

- $\mathrm{x}, \mathrm{y}$, match0, _abc are identifiers (ID)
- float, return are keywords (FLOAT, RETURN)
- 3, 12, 512 are numbers (NUM)
$\Rightarrow$ regular expressions
(2) Recognition: how to recognize the lexical patterns?
- Recognize match0 as an identifier.
- Recognize float as a keyword.
- Recognize 512 as a number.
$\Rightarrow$ deterministic finite automata.
(3) Automation: how to automatically generate string recognizers from specifications?
$\Rightarrow$ Thompson's construction and subset construction


## cf) Lexical Analyzer Generator



- lex: a lexical analyzer generator for $C$
- jlex: a lexical analyzer generator for Java
- ocamllex: a lexical analyzer generator for OCaml


## Part 1: Specification

- Preliminaries: alphabets, strings, languages
- Syntax and semantics of regular expressions
- Extensions of regular expressions


## Alphabet

An alphabet $\boldsymbol{\Sigma}$ is a finite, non-empty set of symbols. E.g,

- $\Sigma=\{0,1\}$
- $\Sigma=\{a, b, \ldots, z\}$


## Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., $\mathbf{1}$, $\mathbf{0 1}, \mathbf{1 0 1 1 0}$ are strings over $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$. Notations:

- $\epsilon$ : the empty string.
- $\boldsymbol{w} \boldsymbol{v}$ : the concatenation of $\boldsymbol{w}$ and $\boldsymbol{v}$.
- $\boldsymbol{w}^{\boldsymbol{R}}$ : the reverse of $\boldsymbol{w}$.
- $|\boldsymbol{w}|$ : the length of string $\boldsymbol{w}$ :

$$
\begin{aligned}
|\epsilon| & =0 \\
|v a| & =|v|+1
\end{aligned}
$$

- If $\boldsymbol{w}=\boldsymbol{v} \boldsymbol{u}$, then $\boldsymbol{v}$ is a prefix of $\boldsymbol{w}$, and $\boldsymbol{u}$ is a suffix of $\boldsymbol{w}$.
- $\Sigma^{k}$ : the set of strings over $\boldsymbol{\Sigma}$ of length $\boldsymbol{k}$
- $\Sigma^{*}$ : the set of all strings over alphabet $\Sigma$ :

$$
\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \cdots=\bigcup_{i \in \mathbb{N}} \Sigma^{i}
$$

- $\Sigma^{+}=\Sigma^{1} \cup \Sigma^{2} \cup \cdots=\Sigma^{*} \backslash\{\epsilon\}$


## Languages

A language $\boldsymbol{L}$ is a subset of $\boldsymbol{\Sigma}^{*}: \boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$.

- $L_{1} \cup L_{2}, \quad L_{1} \cap L_{2}, \quad L_{1}-L_{2}$
- $L^{R}=\left\{w^{R} \mid w \in L\right\}$
- $\bar{L}=\Sigma^{*}-L$
- $L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}$
- The power of a language, $\boldsymbol{L}^{n}$ :

$$
\begin{aligned}
L^{0} & =\{\epsilon\} \\
L^{n} & =L^{n-1} L
\end{aligned}
$$

- The star-closure (or Kleene closure) of a language, $\boldsymbol{L}^{*}$ :

$$
L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{i \geq 0} L^{i}
$$

- The positive closure of a language, $\boldsymbol{L}^{+}$:

$$
L^{+}=L^{1} \cup L^{2} \cup L^{3} \cup \cdots=\bigcup_{i \geq 1} L^{i}
$$

## Regular Expressions

A regular expression is a notation to denote a language.

- Syntax

- Semantics

$$
\begin{aligned}
L(\emptyset) & =\emptyset \\
L(\epsilon) & =\{\epsilon\} \\
L(a) & =\{a\} \\
L\left(\boldsymbol{R}_{1} \mid \boldsymbol{R}_{2}\right) & =L\left(\boldsymbol{R}_{1}\right) \cup L\left(\boldsymbol{R}_{2}\right) \\
L\left(\boldsymbol{R}_{1} \cdot \boldsymbol{R}_{2}\right) & =L\left(\boldsymbol{R}_{1}\right) L\left(\boldsymbol{R}_{2}\right) \\
L\left(\boldsymbol{R}^{*}\right) & =(L(\boldsymbol{R}))^{*} \\
L((\boldsymbol{R})) & =L(\boldsymbol{R})
\end{aligned}
$$

## Example

$$
\begin{aligned}
L\left(a^{*} \cdot(a \mid b)\right) & =L\left(a^{*}\right) L(a \mid b) \\
& =(L(a))^{*}(L(a) \cup L(b)) \\
& =(\{a\})^{*}(\{a\} \cup\{b\}) \\
& =\{\epsilon, a, a a, a a a, \ldots\}(\{a, b\}) \\
& =\{a, a a, a a a, \ldots, b, a b, a a b, \ldots\}
\end{aligned}
$$

## Exercises

Write regular expressions for the following languages:

- The set of all strings over $\Sigma=\{a, b\}$.
- The set of strings of $\boldsymbol{a}$ 's and $\boldsymbol{b}$ 's, terminated by $\boldsymbol{a b}$.
- The set of strings with an even number of $\boldsymbol{a}$ 's followed by an odd number of $\boldsymbol{b}$ 's.
- The set of $C$ identifiers.


## Regular Definitions

Give names to regular expressions and use the names in subsequent expressions, e.g., the set of $C$ identifiers:

$$
\begin{aligned}
\text { letter } & \rightarrow \mathrm{A}|\mathrm{~B}| \cdots|\mathrm{Z}| \mathrm{a}|\mathrm{~b}| \cdots|\mathrm{z}|- \\
\text { digit } & \rightarrow 0|1| \cdots \mid 9 \\
\text { id } & \rightarrow \text { letter }(\text { letter } \mid \text { digit })^{*}
\end{aligned}
$$

Formally, a regular definition is a sequence of definitions of the form:

(1) Each $\boldsymbol{d}_{\boldsymbol{i}}$ is a new name such that $\boldsymbol{d}_{\boldsymbol{i}} \notin \boldsymbol{\Sigma}$.
(2) Each $r_{i}$ is a regular expression over $\Sigma \cup\left\{d_{1}, d_{2}, \ldots, d_{i-1}\right\}$.

## Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234 , 6.336 E 4 , or $1.89 \mathrm{E}-4$ :

| digit | $\rightarrow 0\|1\| \ldots \mid 9$ |
| ---: | :--- |
| digits | $\rightarrow$ digit digit* |
| optionalFraction | $\rightarrow \cdot$ digits $\mid \epsilon$ |
| optionalExponent | $\rightarrow(\mathrm{E}(+\|-\| \epsilon)$ digits $) \mid \epsilon$ |
| number | $\rightarrow$ digits optionalFraction optionalExponent |

## Extensions of Regular Expressions

(1) $R^{+}$: the positive closure of $R$, i.e., $L\left(R^{+}\right)=L(R)^{+}$.
(2) $R$ ?: zero or one instance of $R$, i.e., $L(R ?)=L(R) \cup\{\epsilon\}$.
(3) $\left[a_{1} a_{2} \cdots a_{n}\right]$ : the shorthand for $a_{1}\left|a_{2}\right| \cdots \mid a_{n}$.
(9) $\left[a_{1}-a_{n}\right]$ : the shorthand for $\left[a_{1} a_{2} \cdots a_{n}\right]$, where $a_{1}, \ldots, a_{n}$ are consecutive symbols.

- $[a b c]=a|b| c$
- $[a-z]=a|b| \cdots \mid z$.


## Examples

- C identifiers:

$$
\begin{aligned}
\text { letter } & \rightarrow\left[\mathrm{A}-\mathrm{Za}-\mathrm{z}_{-}\right] \\
\text {digit } & \rightarrow[0-9] \\
\text { id } & \rightarrow \text { letter (letter } \mid \text { digit })^{*}
\end{aligned}
$$

- Unsigned numbers:

$$
\begin{aligned}
\text { digit } & \rightarrow[0-9] \\
\text { digits } & \rightarrow \text { digit }^{+} \\
\text {number } & \rightarrow \text { digits }(. \text { digits }) ?(\mathrm{E}[+-] ? \text { digits }) ?
\end{aligned}
$$

