COSE312: Compilers

Lecture 19 — Register Allocation?

Hakjoo Oh
2015 Fall

'Most slides are adapted from the compiler course materials by Alex Aiken
https://class.coursera.org/compilers-004/lecture

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 1/28


h

Back-End of a Compiler

Generate the target machine code from IR:

IR
e —

Back End

target program
—

@ A key component of compiler back-end is register allocation.

@ The remaining translation from IR to machine code is not difficult.

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015

2/28



Register Allocation

o Intermediate representation (IR) uses unlimited temporaries

» Simplifies code generation and optimization
» Complicates final translation to assembly

@ Typical intermediate code uses too many temporaries

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 3/28



Register Allocation

@ The problem:
Rewrite the intermediate code to use no more
temporaries than there are machine registers
@ Method:

» Assign multiple temporaries to each register
» But without changing the program behavior

o Example:
a:=c+d rl :=r2 + r3
e :=a+b rl :=rl1 +r4
f :'=e -1 rl :=r1 -1

(assume a and e dead after use)

@ A dead temporary can be reused.

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 4/28



Register Allocation

@ Register allocation is as old as compilers
> Register allocation was used in the original FORTRAN compiler in the
1950s
» Very crude algorithms
@ A breakthrough came in 1980

> Register allocation scheme based on graph coloring
> Relatively simple, global and works well in practice

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 5/28



Register Allocation

Temporaries t1 and t2 can share the same register if at any point in the
program at most one of ¢ or to is live.

Or

If 1 and to are live at the same time, they cannot share a register.

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 6 /28



Example

Compute live variables for each point:

— {bof}

——
@ch — b
Gafi— "7
{C e} >e = +\/{C,d,E,f}
b=d+e
‘ f:=2%¢ ‘ cmen —{b,c,e,f}

{cf} —> {cfl — {b,c,f}
~—{b}

{b} —=

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 7 /28



Register Allocation

@ Construct an undirected graph
» A node for each temporary
» An edge between t; and t5 if they are live simultaneously at some
point in the program
e This is the register interference graph (RIG).
» Two temporaries can be allocated to the same register if there is no
edge connecting them

@ For our example:

d

» E.g., b and c cannot be in the same register
» E.g., b and d could be in the same register

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 8 /28



Exercise

Construct the register interference graph:

Hakjoo Oh COSE312 2015 Fall, Lecture 19



Graph Coloring

@ A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colors

@ A graph is k-colorable if it has a coloring with k colors.

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 10 / 28



Graph Coloring

@ In our problem, colors = registers
» We need to assign colors (registers) to graph nodes (temporaries)

o Let k be the number of machine registers

o If the RIG is k-colorable then there is a register assignment that uses
no more than k registers

@ Consider the example RIG:

dr3

(There is no coloring with less than 4 colors)

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 11 /28



Graph Coloring

Hakjoo Oh COSE312 2015 Fall, Lecture 19



Graph Coloring

Hakjoo Oh COSE312 2015 Fall, Lecture 19



Graph Coloring

@ How do we compute graph coloring?
@ It isn't easy:

@ This problem is very hard (NP-hard). No efficient algorithms are
known.

* Solution: use heuristics
@ A coloring might not exist for a given number of registers
* Solution: “spilling”

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 14 / 28



Graph Coloring

o Observation:
» Pick a node t with fewer than k neighbors in RIG
» Eliminate £ and its edges from RIG
> If resulting graph is k-coloring, then so is the original graph
o Why?
> Let ¢1,...,cy, be the colors assigned to the neighbors of ¢ in the
reduced graph

» Since n < k, we can pick some color for t that is different from those
of its neighbors

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 15 / 28



Graph Coloring

@ Push RIG nodes onto a stack:
» Pick a node t with fewer than k neighbors
» Put t on a stack and remove it from the RIG
> Repeat until the graph is empty
@ Assign colors to nodes on the stack
» Start with the last node added
> At each step pick a color different from those assigned to already
colored neighbors

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 16 / 28



Example
Assume k = 4:

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 17 / 28



Spilling
@ What happens if the graph coloring heuristic fails to find a coloring?

@ In this case, we can't hold all values in registers.
» Some values are spilled to memory

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 18 / 28



Spilling

@ What if all nodes have k or more neighbors?

@ Example: Try to find a 3-coloring of the RIG:

a

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 19 /28



Spilling

@ Remove a and get stuck

d

@ Pick a node as a candidate for spilling

> A spilled value “lives” in memory
» Assume f is chosen

@ Remove f and continue the simplification. Simplification now
succeeds for b, d, e, c

d

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 20 / 28



Spilling

o Eventually, we must assign a color to f
@ We hope that among the 4 neighbors of f we use less than 4 colors
(“optimistic coloring™)
b r3

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 21 /28



Spilling
o If optimistic coloring fails, we spill f

> Allocate a memory location for f
» Call this address a

@ Before each operation that reads f, insert
f:=load a
o Before each operation that writes f, insert

store f,a

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 22 /28



Example

fi=2%e

Hakjoo Oh COSE312 2015 Fall, Lecture 19



Example

a:=b+c
The code after spillingf | d:=-a
fl :=load fa
e:=d+fl
fa:=2%e b:=d+e
store f2, fa ;il
f3 :=load fa
b:=f3+c

/

Hakjoo Oh COSE312 2015 Fall, Lecture 19




Example

Recompute liveness /—ﬁgilling

ol —. a:=b+c

d:=-a
A —1 61" ad fa
{c.d.f1} —— [e:=d+f1 — {b,cfr
klei/\-‘/{c'd’e»
fa:=2%*e b:=d+e beelr
J— ,C,e
{cf2) store f2, fa e=e-1
{b,cfy

{C,NCX = “—ib}

f3 :=load fa
{c.f3} — |b=f3+c

oy —,

Hakjoo Oh COSE312 2015 Fall, Lecture 19



Spilling

@ New liveness information is almost as before
o f; is live only
> Between a f; := load a and the next instruction
» Between a store f;, a and the preceding instruction

@ Spilling reduces the live range of f

» And thus reduces its interferences
» Which results in fewer RIG neighbors
a

f2

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 26 / 28



Spilling

o Additional spills might be required before a coloring is found
@ The tricky part is deciding what to spill

» But any choice is correct
@ Possible heuristics:

» Spill temporaries with most conflicts
> Spill temporaries with few definitions and uses
» Avoid spilling in inner loops

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 27 / 28



Summary
o Register allocation is a “must have” in compilers

» Because intermediate code uses too many temporaries
» Because it makes a big difference in performance

Hakjoo Oh COSE312 2015 Fall, Lecture 19 December 3, 2015 28 /28



