COSE312: Compilers

Lecture 17 — Data-Flow Analysis (3)

Hakjoo Oh 2015 Fall

Constant Propagation Analysis

For each program point, determine whether a variable has a constant value whenever execution reaches that point.

How It Works (1)

How It Works (2)

How It Works (3)

Abstract Domain

• Each variable is associated with an abstract value:

$$\begin{array}{lll} \mathbb{D} & = & Var \rightarrow \mathbb{C} \\ \mathbb{C} & = & \{\ldots, -2, -1, 0, 1, 2, \ldots\} \cup \{\bot, \top\} \end{array}$$

• The elements in \mathbb{C} are partially ordered (i.e., \mathbb{C} is a *poset*):

$$\forall c_1, c_2 \in \mathbb{C}. \ c_1 \sqsubseteq c_2 \ \text{iff} \ c_1 = \bot \ \lor \ c_2 = \top \ \lor \ c_1 = c_2$$

ullet The elements in $\mathbb D$ are also partially ordered:

$$\forall d_1, d_2 \in \mathbb{D}. \ d_1 \sqsubseteq d_2 \ \mathsf{iff} \ \forall x \in \mathit{Var}. \ d_1(x) \sqsubseteq d_2(x)$$

Abstract Domain

• The join between domain elements:

$$c_1 \sqcup c_2 = \left\{ egin{array}{ll} c_2 & c_1 = ot \ c_1 & c_2 = ot \ c_1 & c_1 = c_2 \ ot & ext{o.w.} \end{array}
ight.$$

$$d_1 \sqcup d_2 = \lambda x \in Var. \ d_1(x) \sqcup d_2(x)$$

Transfer Functions

Transfer functions model the program execution in terms of the abstract domain:

• Transfer function for z=3:

$$\lambda d \in \mathbb{D}.~[z \mapsto 3]d$$

• Transfer function for x > 0:

$$\lambda d \in \mathbb{D}. d$$

• Transfer function for y = z + 4:

$$\lambda d \in \mathbb{D}. \; \left\{ egin{array}{ll} oxed{\perp} & d(z) = oxed{\perp} \ oxed{\top} & d(z) = oxed{\top} \ d(z) + 4 & ext{o.w.} \end{array}
ight.$$

Constant Propagation Analysis

Final outcome:

$$\mathsf{out}:Block o (\mathit{Var} o \mathbb{C})$$

Equation:

$$\operatorname{out}(ENTRY) = \lambda x. \perp$$

 $\operatorname{out}(B) = f_B(\bigsqcup_{P \hookrightarrow B} \operatorname{out}(P))$

Fixed point algorithm:

```
For all i, \operatorname{out}(B_i) = \emptyset while (changes to any out occur) {
For all i, update
\operatorname{out}(B_i) = f_{B_i}(\bigsqcup_{P \hookrightarrow B_i} \operatorname{out}(P))
}
```