
COSE312: Compilers

Lecture 16 — Data-Flow Analysis (2)

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 1 / 15



Liveness Analysis

A variable is live at program point p if its value could be used in the
future (along some path starting at p).

Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Applications: deadcode detection, uninitialized variable detection,
register allocation, etc

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 2 / 15



Example: Liveness of Variables

The live range of b: {2→ 3, 3→ 4}
The live range of a: {1→ 2, 4→ 5→ 2}
The live range of c: the entire code

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 3 / 15



Example: Liveness of Variables

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 4 / 15



Liveness Analysis

The goal is to compute

in : Block → P(Var)
out : Block → 2 Var

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 5 / 15



Def/Use Sets

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 6 / 15



cf) Def/Use sets are only dynamically computable

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 7 / 15



1. Data-Flow Equations

Intuitions:

1 If a variable is in use(B), then it is live on entry to block B.

2 If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

3 If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:

in(B) =
out(B) =

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 8 / 15



2. Fixed Point Computation

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {

For all i, update
in(Bi) = use(B) ∪ (out(B)− def(B))
out(Bi) =

⋃
B↪→S in(S)

}

1st 2nd 3rd

use def out in out in out in
6 {c} ∅ ∅ {c} ∅ {c} ∅ {c}
5 {a} ∅ {c} {a, c} {a, c} {a, c} {a, c} {a, c}
4 {b} {a} {a, c} {b, c} {a, c} {b, c} {a, c} {b, c}
3 {b, c} {c} {b, c} {b, c} {b, c} {b, c} {b, c} {b, c}
2 {a} {b} {b, c} {a, c} {b, c} {a, c} {b, c} {a, c}
1 ∅ {a} {a, c} {c} {a, c} {c} {a, c} {c}

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 9 / 15



Available Expressions Analysis

An expression x + y is available at a point p if every path from the
entry node to p evaluates x + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

Application: common subexpression elimination

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 10 / 15



Available Expressions Analysis

The goal is to compute

in : Block → 2 Expr

out : Block → 2 Expr

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 11 / 15



Gen/Kill Sets

gen(B): the set of expressions evaluated and not subsequently killed

kill(B): the set of expressions whose variables can be killed

Exercises:

What expressions are generated and killed by each of statements?

Statement s gen(s) kill(s)
x = y + z
x = alloc(n)
x = y[i]
x[i] = y

what expressions are generated and killed by the block?

a = b + c
b = a− d
c = b + c
d = a− d

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 12 / 15



1. Set up a set of data-flow equations

Intuitions:

1 At the entry, no expressions are available.

2 An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Equations:

in(ENTRY ) = ∅

out(B) = gen(B) ∪ (in(B)− kill(B))
in(B) =

cf)
⋂
∅ = U,

⋃
∅ = ∅

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 13 / 15



2. Solve the equations

Trivial solution: in(Bi) = out(Bi) = ∅.
Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY ) = ∅
For other Bi, in(Bi) = out(Bi) = Expr
while (changes to any in and out occur) {

For all i, update
in(Bi) =

⋂
P ↪→Bi

out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))
}

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 14 / 15



Summary: Data-flow Analysis

Reaching Definitions Liveness Analysis Available Expressions
Domain Sets of definitions Sets of variables Sets of expressions

(2Definitions ) (2Var ) (2Expr )
Direction Forwards Backwards Forwards
Transfer gen ∪ (x− kill) use ∪ (x− def) gen ∪ (x− kill)
function
Boundary out[ENTRY ] = ∅ in[EXIT ] = ∅ out[ENTRY ] = ∅
Join ∪ ∪ ∩
Equations out(B) = fB(in(B)) in(B) = fB(out(B)) out(B) = fB(in(B))

in(B) =
⋃

P↪→B out(P ) out(B) =
⋃

B↪→S in(S) in(B) =
⋃

P↪→B out(P )
Initialize out(B) = ∅ in(B) = ∅ out(B) = U

Hakjoo Oh COSE312 2015 Fall, Lecture 16 November 10, 2015 15 / 15


