COSE312: Compilers

Lecture 16 - Data-Flow Analysis (2)

Hakjoo Oh
2015 Fall

Liveness Analysis

- A variable is live at program point \boldsymbol{p} if its value could be used in the future (along some path starting at \boldsymbol{p}).

- Liveness analysis aims to compute the set of live variables for each basic block of the program.
- Applications: deadcode detection, uninitialized variable detection, register allocation, etc

Example: Liveness of Variables

- The live range of $b:\{2 \rightarrow 3,3 \rightarrow 4\}$
- The live range of $a:\{1 \rightarrow 2,4 \rightarrow 5 \rightarrow 2\}$
- The live range of \boldsymbol{c} : the entire code

Example: Liveness of Variables

Liveness Analysis

The goal is to compute

$$
\begin{aligned}
\text { in } & : \text { Block } \rightarrow \mathcal{P}(\text { Var }) \\
\text { out } & : \text { Block } \rightarrow \mathcal{2}^{\text {Var }}
\end{aligned}
$$

(1) Derive the set of data-flow equations.
(2) Solve the equation by the iterative fixed point algorithm.

Def/Use Sets

cf) Def/Use sets are only dynamically computable

1. Data-Flow Equations

Intuitions:
(1) If a variable is in use (\boldsymbol{B}), then it is live on entry to block \boldsymbol{B}.
(2) If a variable is live at the end of block \boldsymbol{B}, and not in $\operatorname{def}(\boldsymbol{B})$, then the variable is also live on entry to \boldsymbol{B}.
(3) If a variable is live on enty to block \boldsymbol{B}, then it is live at the end of predecessors of \boldsymbol{B}.

Equations:

$$
\begin{array}{r}
\operatorname{in}(B)= \\
\operatorname{out}(B)=
\end{array}
$$

2. Fixed Point Computation

For all $i, \operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\emptyset$ while (changes to any in and out occur) \{

For all \boldsymbol{i}, update $\operatorname{in}\left(B_{i}\right)=\operatorname{use}(B) \cup(\operatorname{out}(B)-\operatorname{def}(B))$ $\operatorname{out}\left(B_{i}\right)=\bigcup_{B \hookrightarrow S} \operatorname{in}(S)$
\}

			1st		2nd		3rd	
	use	def	out	in	out	in	out	in
$\mathbf{6}$	$\{c\}$	\emptyset	\emptyset	$\{c\}$	\emptyset	$\{c\}$	\emptyset	$\{c\}$
$\mathbf{5}$	$\{a\}$	\emptyset	$\{c\}$	$\{a, c\}$				
$\mathbf{4}$	$\{b\}$	$\{a\}$	$\{a, c\}$	$\{b, c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, c\}$	$\{b, c\}$
$\mathbf{3}$	$\{b, c\}$	$\{c\}$	$\{b, c\}$					
$\mathbf{2}$	$\{a\}$	$\{b\}$	$\{b, c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, c\}$	$\{b, c\}$	$\{a, c\}$
$\mathbf{1}$	\emptyset	$\{a\}$	$\{a, c\}$	$\{c\}$	$\{a, c\}$	$\{c\}$	$\{a, c\}$	$\{c\}$

Available Expressions Analysis

- An expression $\boldsymbol{x}+\boldsymbol{y}$ is available at a point \boldsymbol{p} if every path from the entry node to \boldsymbol{p} evaluates $\boldsymbol{x}+\boldsymbol{y}$, and after the last such evaluation prior to reaching \boldsymbol{p}, there are no subsequent assignments to \boldsymbol{x} or \boldsymbol{y}.

- Application: common subexpression elimination

Available Expressions Analysis

The goal is to compute

$$
\begin{aligned}
\text { in } & : \quad \text { Block } \rightarrow 2^{E x p r} \\
\text { out } & : B l o c k \rightarrow \mathcal{2}^{\text {Expr }}
\end{aligned}
$$

(1) Derive the set of data-flow equations.
(2) Solve the equation by the iterative fixed point algorithm.

Gen/Kill Sets

- gen (\boldsymbol{B}) : the set of expressions evaluated and not subsequently killed
- kill (\boldsymbol{B}) : the set of expressions whose variables can be killed

Exercises:

- What expressions are generated and killed by each of statements?

Statement s	$\operatorname{gen}(s)$	$\operatorname{kill}(s)$
$\boldsymbol{x}=\boldsymbol{y}+\boldsymbol{z}$		
$\boldsymbol{x}=\operatorname{alloc}(\boldsymbol{n})$		
$\boldsymbol{x}=\boldsymbol{y}[\boldsymbol{i}]$		
$\boldsymbol{x}[\boldsymbol{i}]=\boldsymbol{y}$		

- what expressions are generated and killed by the block?

$$
\begin{array}{|l|}
\hline a=b+c \\
b=a-d \\
c=b+c \\
d=a-d \\
\hline
\end{array}
$$

1. Set up a set of data-flow equations

Intuitions:
(1) At the entry, no expressions are available.
(2) An expression is available at the entry of a block only if it is available at the end of all its predecessors.

Equations:

$$
\begin{aligned}
& \operatorname{in}(E N T R Y)=\emptyset \\
& \operatorname{out}(B)=\operatorname{gen}(B) \cup(\operatorname{in}(B)-\operatorname{kill}(B)) \\
& \operatorname{in}(B)= \\
& \text { cf) } \cap \emptyset=U, \cup \emptyset=\emptyset
\end{aligned}
$$

2. Solve the equations

- Trivial solution: $\operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\emptyset$.
- Need to find the greatest solution (i.e., greatest fixed point) of the equation.

$$
\operatorname{in}(E N T R Y)=\emptyset
$$

For other $B_{i}, \operatorname{in}\left(B_{i}\right)=\operatorname{out}\left(B_{i}\right)=\operatorname{Expr}$ while (changes to any in and out occur) \{

For all \boldsymbol{i}, update

$$
\begin{aligned}
& \operatorname{in}\left(B_{i}\right)=\bigcap_{P \hookrightarrow B_{i}} \operatorname{out}(P) \\
& \operatorname{out}\left(B_{i}\right)=\operatorname{gen}\left(B_{i}\right) \cup\left(\operatorname{in}\left(B_{i}\right)-\operatorname{kill}\left(B_{i}\right)\right)
\end{aligned}
$$

\}

Summary: Data-flow Analysis

	Reaching Definitions	Liveness Analysis	Available Expressions
Domain	Sets of definitions ($2^{\text {Definitions }}$)	Sets of variables $\left(2^{V a r}\right)$	Sets of expressions ($2^{\text {Expr }}$)
Direction	Forwards	Backwards	Forwards
Transfer function	$g e n \cup(x-k i l l)$	$\boldsymbol{u s e} \cup(x-d e f)$	$g e n \cup(x-k i l l)$
Boundary	out $[$ ENTRY $]=\emptyset$	$\operatorname{in}[$ EXIT $]=\emptyset$	out $[$ ENTRY $]=\emptyset$
Join	\cup	\cup	\cap
Equations	$\begin{aligned} & \operatorname{out}(B)=f_{B}(\operatorname{in}(B)) \\ & \operatorname{in}(B)=\bigcup_{P \hookrightarrow B} \text { out }(P) \end{aligned}$	$\begin{aligned} & \operatorname{in}(B)=f_{B}(\operatorname{out}(B)) \\ & \operatorname{out}(B)=\bigcup_{B \hookrightarrow S} \operatorname{in}(S) \end{aligned}$	$\begin{aligned} & \operatorname{out}(B)=f_{B}(\operatorname{in}(B)) \\ & \operatorname{in}(B)=\bigcup_{P \hookrightarrow B} \text { out }(P \end{aligned}$
Initialize	out $(B)=\emptyset$	$\operatorname{in}(B)=\emptyset$	out $(B)=U$

