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Liveness Analysis

A variable is live at program point p if its value could be used in the
future (along some path starting at p).

Liveness analysis aims to compute the set of live variables for each
basic block of the program.

Applications: deadcode detection, uninitialized variable detection,
register allocation, etc
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Example: Liveness of Variables

The live range of b: {2→ 3, 3→ 4}
The live range of a: {1→ 2, 4→ 5→ 2}
The live range of c: the entire code
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Example: Liveness of Variables
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Liveness Analysis

The goal is to compute

in : Block → P(Var)
out : Block → 2 Var

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.
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Def/Use Sets
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cf) Def/Use sets are only dynamically computable
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1. Data-Flow Equations

Intuitions:

1 If a variable is in use(B), then it is live on entry to block B.

2 If a variable is live at the end of block B, and not in def(B), then
the variable is also live on entry to B.

3 If a variable is live on enty to block B, then it is live at the end of
predecessors of B.

Equations:

in(B) =
out(B) =
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2. Fixed Point Computation

For all i, in(Bi) = out(Bi) = ∅
while (changes to any in and out occur) {

For all i, update
in(Bi) = use(B) ∪ (out(B)− def(B))
out(Bi) =

⋃
B↪→S in(S)

}

1st 2nd 3rd

use def out in out in out in
6 {c} ∅ ∅ {c} ∅ {c} ∅ {c}
5 {a} ∅ {c} {a, c} {a, c} {a, c} {a, c} {a, c}
4 {b} {a} {a, c} {b, c} {a, c} {b, c} {a, c} {b, c}
3 {b, c} {c} {b, c} {b, c} {b, c} {b, c} {b, c} {b, c}
2 {a} {b} {b, c} {a, c} {b, c} {a, c} {b, c} {a, c}
1 ∅ {a} {a, c} {c} {a, c} {c} {a, c} {c}
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Available Expressions Analysis

An expression x + y is available at a point p if every path from the
entry node to p evaluates x + y, and after the last such evaluation
prior to reaching p, there are no subsequent assignments to x or y.

Application: common subexpression elimination
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Available Expressions Analysis

The goal is to compute

in : Block → 2 Expr

out : Block → 2 Expr

1 Derive the set of data-flow equations.

2 Solve the equation by the iterative fixed point algorithm.
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Gen/Kill Sets

gen(B): the set of expressions evaluated and not subsequently killed

kill(B): the set of expressions whose variables can be killed

Exercises:

What expressions are generated and killed by each of statements?

Statement s gen(s) kill(s)
x = y + z
x = alloc(n)
x = y[i]
x[i] = y

what expressions are generated and killed by the block?

a = b + c
b = a− d
c = b + c
d = a− d
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1. Set up a set of data-flow equations

Intuitions:

1 At the entry, no expressions are available.

2 An expression is available at the entry of a block only if it is available
at the end of all its predecessors.

Equations:

in(ENTRY ) = ∅

out(B) = gen(B) ∪ (in(B)− kill(B))
in(B) =

cf)
⋂
∅ = U,

⋃
∅ = ∅
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2. Solve the equations

Trivial solution: in(Bi) = out(Bi) = ∅.
Need to find the greatest solution (i.e., greatest fixed point) of the
equation.

in(ENTRY ) = ∅
For other Bi, in(Bi) = out(Bi) = Expr
while (changes to any in and out occur) {

For all i, update
in(Bi) =

⋂
P ↪→Bi

out(P )

out(Bi) = gen(Bi) ∪ (in(Bi)− kill(Bi))
}
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Summary: Data-flow Analysis

Reaching Definitions Liveness Analysis Available Expressions
Domain Sets of definitions Sets of variables Sets of expressions

(2Definitions ) (2Var ) (2Expr )
Direction Forwards Backwards Forwards
Transfer gen ∪ (x− kill) use ∪ (x− def) gen ∪ (x− kill)
function
Boundary out[ENTRY ] = ∅ in[EXIT ] = ∅ out[ENTRY ] = ∅
Join ∪ ∪ ∩
Equations out(B) = fB(in(B)) in(B) = fB(out(B)) out(B) = fB(in(B))

in(B) =
⋃

P↪→B out(P ) out(B) =
⋃

B↪→S in(S) in(B) =
⋃

P↪→B out(P )
Initialize out(B) = ∅ in(B) = ∅ out(B) = U
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