COSE312: Compilers Lecture 16 — Data-Flow Analysis (2)

Hakjoo Oh 2015 Fall

Liveness Analysis

• A variable is *live* at program point p if its value could be used in the future (along some path starting at p).

- Liveness analysis aims to compute the set of live variables for each basic block of the program.
- Applications: deadcode detection, uninitialized variable detection, register allocation, etc

Example: Liveness of Variables

- The live range of $b: \{2
 ightarrow 3, 3
 ightarrow 4\}$
- ullet The live range of $a\colon \{1 o 2, 4 o 5 o 2\}$
- The live range of c: the entire code

Example: Liveness of Variables

Liveness Analysis

The goal is to compute

- in : $Block \rightarrow \mathcal{P}(Var)$ out : $Block \rightarrow 2^{Var}$
- Our prive the set of data-flow equations.
- Solve the equation by the iterative fixed point algorithm.

Def/Use Sets

cf) Def/Use sets are only dynamically computable

1. Data-Flow Equations

Intuitions:

- **(**) If a variable is in use(B), then it is live on entry to block B.
- 3 If a variable is live at the end of block B, and not in def(B), then the variable is also live on entry to B.
- If a variable is live on enty to block B, then it is live at the end of predecessors of B.

Equations:

$$in(B) = out(B) =$$

2. Fixed Point Computation

For all
$$i, in(B_i) = out(B_i) = \emptyset$$

while (changes to any in and out occur) {
For all i , update
 $in(B_i) = use(B) \cup (out(B) - def(B))$
 $out(B_i) = \bigcup_{B \hookrightarrow S} in(S)$
}

			1st		2nd		3rd	
	use	def	out	in	out	in	out	in
			Ø					
			$\{c\}$					
4	$\{b\}$	$\{a\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$
3	$\{b,c\}$	$\{c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$
2	$\{a\}$	$\{b\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$	$\{b,c\}$	$\{a,c\}$
1	Ø	$\{a\}$	$ \{a,c\}$	$\{c\}$	$ \{a,c\}$	$\{c\}$	$\{a,c\}$	$\{c\}$

Available Expressions Analysis

• An expression x + y is *available* at a point p if every path from the entry node to p evaluates x + y, and after the last such evaluation prior to reaching p, there are no subsequent assignments to x or y.

• Application: common subexpression elimination

Available Expressions Analysis

The goal is to compute

- $\begin{array}{lll} \mbox{in} & : & Block \rightarrow \mathcal{2}^{Expr} \\ \mbox{out} & : & Block \rightarrow \mathcal{2}^{Expr} \end{array}$
- Our prive the set of data-flow equations.
- **②** Solve the equation by the iterative fixed point algorithm.

Gen/Kill Sets

- gen(B): the set of expressions evaluated and not subsequently killed
- kill(B): the set of expressions whose variables can be killed

Exercises:

• What expressions are generated and killed by each of statements?

Statement s	gen(s)	kill(s)
x = y + z		
x = alloc(n)		
x = y[i]		
x[i]=y		

• what expressions are generated and killed by the block?

$$a = b + c$$

$$b = a - d$$

$$c = b + c$$

$$d = a - d$$

1. Set up a set of data-flow equations

Intuitions:

- At the entry, no expressions are available.
- An expression is available at the entry of a block only if it is available at the end of *all* its predecessors.

Equations:

cf) $\bigcap \emptyset = U, \bigcup \emptyset = \emptyset$

2. Solve the equations

- Trivial solution: $in(B_i) = out(B_i) = \emptyset$.
- Need to find the greatest solution (i.e., greatest fixed point) of the equation.

$$\begin{split} & \mathsf{in}(ENTRY) = \emptyset \\ & \mathsf{For other } B_i, \mathsf{in}(B_i) = \mathsf{out}(B_i) = Expr \\ & \mathsf{while} \text{ (changes to any in and out occur) } \{ \\ & \mathsf{For all } i, \text{ update} \\ & \mathsf{in}(B_i) = \bigcap_{P \hookrightarrow B_i} \mathsf{out}(P) \\ & \mathsf{out}(B_i) = \mathsf{gen}(B_i) \cup (\mathsf{in}(B_i) - \mathsf{kill}(B_i)) \\ \} \\ \end{split}$$

Summary: Data-flow Analysis

Reaching Definitions	Liveness Analysis	Available Expressions					
Sets of definitions	Sets of variables	Sets of expressions					
$(2^{Definitions})$	(2^{Var})	(2^{Expr})					
Forwards	Backwards	Forwards					
$gen \cup (x-kill)$	$use \cup (x-def)$	$gen \cup (x-kill)$					
$out[ENTRY] = \emptyset$	$in[EXIT] = \emptyset$	$out[ENTRY] = \emptyset$					
U	U	\cap					
$\operatorname{out}(B) = f_B(\operatorname{in}(B))$	$in(B) = f_B(out(B))$	$\operatorname{out}(B) = f_B(\operatorname{in}(B))$					
$in(B) = \bigcup_{P \hookrightarrow B} out(P)$	$\operatorname{out}(B) = \bigcup_{B \hookrightarrow S} \operatorname{in}(S)$	$in(B) = \bigcup_{P \hookrightarrow B} out(P)$					
$out(B) = \emptyset$	$in(B) = \emptyset$	$\operatorname{out}(B) = U$					
	Sets of definitions $(2^{Definitions})$ Forwards $gen \cup (x - kill)$ $out[ENTRY] = \emptyset$ \cup $out(B) = f_B(in(B))$ $in(B) = \bigcup_{P \hookrightarrow B} out(P)$	Sets of definitions $(2^{Definitions})$ Sets of variables (2^{Var}) ForwardsBackwards $gen \cup (x - kill)$ $use \cup (x - def)$ $out[ENTRY] = \emptyset$ $in[EXIT] = \emptyset$ \cup \cup $out(B) = f_B(in(B))$ $in(B) = \bigcup_{B \hookrightarrow S} in(S)$					