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Data-Flow Anlaysis

A program analysis technique that derives information about the flow of
data along program execution paths.
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Reaching Definitions Analysis

o A definition d reaches a point p if there is a path from the definition

point to p such that d is not “killed” along that path.

x is not “killed”

@ For each program point, RDA finds definitions that can reach the
program point along some execution paths.
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Reaching Definitions Example

ENTRY

Blld1: i = m-1 IN(B1) = {}
d2: j =n
d3: a = ul ouT(B1) = {}
i+l IN(B2) = {}
j-1 ouUT(B2) = {}
IN(B3) = {}
OUT(B3) = {}
:| IN(B4) = {}
u3
oUT(B4) = {}

IN(EXIT) = {}
EXIT
OUT(EXIT) = {}
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Reaching Definitions Example

ENTRY

Bl\g1:

IN(B1) = {}
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ouT(B1) = {d1,d2,d3}
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IN(B2) = {d1,d2,d3,d5,d6,d7}
0UT(B2) = {d3,d4,d5,d6}
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IN(B3) = {d3,d4,d5,d6}
0UT(B3) = {d4,d5,d6}

IN(B4) = {d3,d4,d5,d6}
0UT(B4) = {d3,d5,d6,d7}

IN(EXIT) = {d3,d5,d6,d7}
EXIT
OUT(EXIT) = {d3,d5,d6,d7}

:
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The Analysis is Conservative

@ Exact reaching definitions information cannot be obtained at compile
time. It can be obtained only at runtime.
@ ex) Deciding whether each path can be taken is undecidable:
a =rand(); b = rand(); ¢ = rand();
if (a”10 + 10 != ¢~10) { // always true
// (1)
} else {
/7 (2)
}

@ RDA computes an over-approximation of the reaching definitions that
can be obtained at runtime.
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Reaching Definitions Analysis

The goal is to compute

in : Block — 2Definitions
out : Block — 2Deﬁm’tions

@ Compute gen/Kkill sets.
@ Derive transfer functions for each block in terms of gen/kill sets.
© Derive the set of data-flow equations.

@ Solve the equation by the iterative fixed point algorithm.
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1. Compute Gen/Kill Sets

gen : Block — 2Definitions
kil : Block — 2Definitions

e gen(B): the set of definitions “generated” at block B
o kill(B): the set of definitions “killed” at block B
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Example

Bl{gq: 4 = m_
g;: ; - 2 1 gen(B1) =
43t 3 = ul kill(B1) =
i+1 gen(B2) =
j-1 kill(B2) =
gen(B3) =
kill(B3) =
gen(B4) =
u3 kill(B4) =
A
EXIT
i t LS
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Example
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gen(Bl) = {d1,d2,d3}
kill(B1) = {d4,d5,d6,d7}

gen(B2) = {d4,d5}
kill(B2) = {d1,d2,d7}

gen(B3) = {d6}
kill(B3) = {d3}

gen(B4) = {d7}
kill(B4) = {d1,d4}
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Exercise
Compute the gen and kill sets for the basic block B:

dli: a =3
d2: a 4

e gen(B) =
e kill(B) =
In general, when we have k definitions in a block B:
di; d2; ... d_k
e gen(B) =
gen(dy) U (gen(dr—1) — kill(di)) U (gen(dr—2 — kill(dr—1) —

kill(di,)) U - - - U (gen(dy) — kill(dz) — kill(ds) — - - - — kill(d))
o kill(B) = kill(dy) U kill(dz) U - - - U kill(d,)
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2. Transfer Functions

.fB . 2Deﬁnztwns — 2Deﬁnztwns

@ The transfer function for a block B encodes the semantics of the
block B, i.e., how the block transfers the input to the output.

i+l {d1,d2,d3,d5,d6,d7}

-1 {d3,d4,ds, d6}

d4: i
B2|d5: ]

@ The semantics of B is to add gen(B) and remove kill(B):

FB(X) = gen(X) U (X — kill(X))

1 gen(B2) = {d4,d5}
-1 kill(B2) = {d1,d2,d7}
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B2d:
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3. Derive Data-Flow Equations

in(B1)
out(B1)

in(Bz2)
out(B2)

in(B3)
out(B3)

in(B4)
out(B4)

(]
fB, (in(B1))

out(B1) U out(B4)
fB,(in(Bz2))

out(Bz2)
fB;(in(Bs))

out(B2) U out(B3)
fB4(in(B4))

in(B;)
out(B;)
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IB(in(B;))
gen(B;) U (in(B;) — kill(B;))
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4. Solve the Equations

@ The desired solution is the least in and out that satisfies the
equations (why least?):

in(B;) = Upc,p, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))

@ The equations are solved by the iterative fixed point algorithm:

For all ¢,in(B;) = out(B;) =0
while (changes to any in and out occur) {
For all ¢, update

in(B:) = Upc, 5, out(P)
out(B;) = gen(B;) U (in(B;) — kill(B;))
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Example

Pldi: i = m-1 IN(B1) = {}
d2: j =n
d3: a = ul ouT(B1) = {}
B2[d4: i = i+1 IN(B2) = {}
d5: j = j-1 0UT(B2) = {}
IN(B3) = {}
ouT(B3) = {}

IN(B4) = {}
ouT(B4) = {}

IN(EXIT) = {}
EXIT
OUT(EXIT) = {}

:
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cf) Reaching Definitions Analysis in Fixed Point Form

The reaching definitions information is defined as fix F', where F' is
defined as follows:

F(in,out) = (AB. | out(P),AB.fp(in(B))
P—B

The least fixed point fiz F is by

J F*(AB.0, AB.0)

i>0
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Summary

Every static analysis follows two steps:
@ Set up a set of abstract semantic equations.
» about dynamics of program executions (e.g., how definitions flow)
@ Solve the equations using the iterative fixed point algorithm.
> naive tabulation algorithm, worklist algorithm, etc
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