
COSE312: Compilers

Lecture 13 — Translation (3)

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 1 / 13



Other Intermediate Representations

Three-address code

Static single assignment form

Control-flow graph

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 2 / 13



Three-Address Code

Instructions with at most one operator on the right side.

Temporary variables are needed in translation, e.g., x+ y ∗ z:

t1 = y ∗ z
t2 = x+ t1

A linearized representation of a syntax tree, where temporary variables
correspond to the internal nodes of the tree: e.g.,

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 3 / 13



Static Single Assignment Form

An intermediate representation suitable for many code optimizations.

A program is in SSA iff
1 each definition has a distinct name, and
2 each use refers to a single definition.

Example) Convert the following code into SSA form:

p = a + b

q = p - c

p = q * c

p = e - p

q = p + q

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 4 / 13



Static Single Assignment Form

The SSA form of the following:

if (flag) x = -1; else x = 1;

y = x * a;

needs a φ-function:

if (flag) x1 = -1; else x2 = 1;

x3 = φ(x1, x2);

y = x3 * a;

Here, φ(x1, x2) has the value x1 if the control flow passes through the
true branch and the value x2 otherwise.

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 5 / 13



Static Single Assignment Form

Exercise) Convert the following code into an SSA form:

i = 1

j = 1

k = 0

while (1) {

if (k < 100) {

if (j < 20)

j = i

k = k + 1

else

j = k

k = k + 2

}

else return j

}

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 6 / 13



How to Convert a Program into SSA?

Cytron et al.
Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph.
ACM Transactions on Programming Languages and Systems
(TOPLAS), Volume 13 Issue 4, Pages 451-490

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 7 / 13



Basic Blocks

Maximal sequences of consecutive, branch-free instructions.

x = 1

y = 1

z = x + y

L: t1 = z + 1

t1 = t1 + 1

z = t1

goto L

Properties:
I Instructions in a basic block are always executed together.
I No jumps to the middle of a basic block.
I No jumps out of a basic block, except for the last instruction.

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 8 / 13



Partitioning Instructions into Basic Blocks

Given a sequence of instructions:

Determine leaders, the first instructions in some basic block.
1 The first instruction is a leader.
2 Any instruction that is the target of a conditional or unconditional

jump is a leader.
3 Any instruction that immediately follows a conditional or unconditional

jump is a leader.

For each leader, its basic block consists of itself and all instruction up
to but not including the next leader or the end of the program.

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 9 / 13



Example

i = 1

L1: j = 1

L2: t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0

j = j + 1

if j <= 10 goto L2

i = i + 1

if i <= 10 goto L1

i = 1

L3: t5 = i - 1

t6 = 88 * t5

a[t6] = 1

i = i + 1

if i <= 10 goto L3

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 10 / 13



Control-Flow Graph

A graph representation of intermediate code:

A directed graph G = (N, ↪→), where each node n ∈ N is a basic
block and an edge (n1, n2) ∈ (↪→) indicates a possible control flow
of the program.

n1 ↪→ n2 iff
I there is a conditional or unconditional jump from the end of n1 to the

beginning of n2, or
I n2 immediately follows n1 in the original program, and n1 does not

end in an unconditional jump.

Often, control-flow graphs have unique entry and exit nodes.

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 11 / 13



Example

i = 1

L1: j = 1

L2: t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 - 88

a[t4] = 0

j = j + 1

if j <= 10 goto L2

i = i + 1

if i <= 10 goto L1

i = 1

L3: t5 = i - 1

t6 = 88 * t5

a[t6] = 1

i = i + 1

if i <= 10 goto L3

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 12 / 13



Loops in Flow Graphs

For/while-statements in programming languages are converted into loops
in control-flow graphs.

A set of nodes L in a flow graph is a loop if L contains a node e,
loop entry, such that:

1 e is not the entry node of the flow graph.
2 No node in L besides e has a predecessor outside L. That is, every

path from the entry to any node in L goes through e.
3 Every node in L has a nonempty path, completely within L, to e.

Hakjoo Oh COSE312 2015 Fall, Lecture 13 October 22, 2015 13 / 13


