
COSE312: Compilers

Lecture 1 — Overview of Compilers

Hakjoo Oh
2015 Fall

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 1 / 11



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 2 / 11



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 2 / 11



What is Compiler?

Software systems that translate a program written in one language
(“source language”) into a program written in another language (“target
language”).

Typically,

the source language is a high-level language, e.g., C , and

the target language is a machine language, e.g., x86.

cf) When the target language is not a machine language:

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 2 / 11



A Fundamental Requirement

The compiler must preserve the meaning of the source program.

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 3 / 11



Structure of Modern Compilers

cf) “verifying compilers” (a grand challenge in CS):

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 4 / 11



Structure of Modern Compilers

cf) “verifying compilers” (a grand challenge in CS):

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 4 / 11



Front End

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 5 / 11



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 6 / 11



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 6 / 11



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 6 / 11



Lexical1 Analyzer (Lexer)

A lexer analyzes the lexical structure of the source program:

ex) The lexical analyzer transform the character stream

pos = init + rate * 10

into a sequence of lexemes:

“pos”, “=”, “init”, “+”, “rate”, “*”, “10”

and then produces a token sequence:

(ID, pos), ASSIGN, (ID, init), PLUS, (ID, rate), MULT, (NUM,10)

1of or relating to words or the vocabulary of a language as distinguished from its
grammar and construction

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 6 / 11



Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

ex) the parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

2the way in which words are put together to form phrases, clauses, or sentences
Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 7 / 11



Syntax2 Analyzer (Parser)

A parser analyzes the grammatical structure of the source program:

ex) the parser transforms the sequence of tokens

(ID, pos), =, (ID, init), +, (ID, rate), *, (NUM,10)

into the syntax tree:

2the way in which words are put together to form phrases, clauses, or sentences
Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 7 / 11



IR Translator

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) translate the syntax tree into three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 8 / 11



IR Translator

Intermediate Representation:

lower-level than the source language

higher-level than the target language

ex) translate the syntax tree into three-address code:

t1 = 10

t2 = rate * t1

t3 = init + t2

pos = t3

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 8 / 11



Optimizer

Transform IR to have better performance:

ex)

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 9 / 11



Optimizer

Transform IR to have better performance:

ex)

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 9 / 11



Back End

Generate the target machine code:

ex) from the IR

t2 = rate * 10

pos = init + t2

generate the machine code

LOAD R2, rate

MUL R2, R2, #10

LOAD R1, init

ADD R1, R1, R2

STORE pos, R1

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 10 / 11



Summary

A modern compiler consists of three phases:

The front end understands source program.

The optimizer improves the quality of the program.

The back end generates the target program.

cf) Remember:

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 11 / 11



Summary

A modern compiler consists of three phases:

The front end understands source program.

The optimizer improves the quality of the program.

The back end generates the target program.

cf) Remember:

Hakjoo Oh COSE312 2015 Fall, Lecture 1 September 2, 2015 11 / 11


