
Final Exam
COSE312 Compilers, Fall 2015

Instructor: Hakjoo Oh

Problem 1 (Program Analysis, 40pts) The central technology
of modern optimizing compilers is static program analysis, which
aims to reason about the program’s run-time behavior at compile-
time. The key idea is that compilers execute the program abstractly
(with so-called abstract values) rather than concretely. The purpose
of this problem is to explore this idea by going through a series of
static analyses for a simple programming language.

Consider the following expression language:

e→ n | −e | e1 + e2 | e1 � e2 | e∗ (1)

An expression is an integer (n ∈ Z), a negation (−e), an addition
(e1 + e2), a non-deterministic choice (e1 � e2), or a closure (e∗).
Evaluating an expression e produces an integer. The choice expres-
sion e1 � e2 evaluates to the value of either e1 or e2. The closure e∗

evaluates to one of the values of e1, e2, e3, · · · . For example,

• 2 + 4 evaluates to 6.
• −1 � 1 (randomly) evaluates to one of {−1, 1}.
• 2 + (−2 � 2) evaluates to one of {0, 4}.
• (2 � 3)∗ evaluates to one of {2, 3, 4, 8, 9, 16, 27, · · ·}.

Formally, the possible outcomes of an expression are defined by the
evaluation function V : e→ P(Z) as follows:

V(n) = {n}
V(−e) = {−n | n ∈ V(e)}

V(e1 + e2) = {n1 + n2 | n1 ∈ V(e1) ∧ n2 ∈ V(e2)}
V(e1 � e2) = V(e1) ∪ V(e2)
V(e∗) = {nk | n ∈ V(e) ∧ k ≥ 1}

Let us call V the concrete semantics of the expression language.
A static analysis is obtained by abstracting the concrete seman-

tics. We go through three instances of such approximations below.

1. (10pts) The first analysis aggressively approximates the con-
crete semantics and focuses only on finding out even numbers.
It evaluates a given expression in terms of the following abstract
values:

Ẑ = {e,>}
where each abstract value denotes a set of integers:

γ(e) = {n ∈ Z | n is even}, γ(>) = Z

The analysis can be defined by the abstract version V̂ : e → Ẑ
of the concrete evaluation function. For example,

• V̂(2 + 4) = e

• V̂(−1 � 1) = >
• V̂(2 + (−2 � 2)) = e

• V̂((2 � 3)∗) = >
Define V̂ for this even-number analysis. Note that your analysis
must be safe and must terminate for all expressions. An analysis

V̂ is safe iff it over-approximates the concrete semantics V , i.e.,
for all e, V(e) ⊆ γ(V̂(e)).

V̂(n) =

{
e n is even
> o.w.

V̂(−e) =

{
e V̂(e) = e
> o.w.

V̂(e1 + e2) =

{
e V̂(e1) = e ∧ V̂(e2) = e
> o.w.

V̂(e1 − e2) =

{
e V̂(e1) = e ∧ V̂(e2) = e
> o.w.

V̂(e1 � e2) =

{
e V̂(e1) = e ∧ V̂(e2) = e
> o.w.

V̂(e∗) =

{
e V̂(e) = e
> o.w.

2. (10pts) The previous analysis is too imprecise to find out even
some trivial properties. For example, even though expression
1 + 3 definitely evaluates to an even number (4), the analysis
fails to capture this property, i.e., V̂(1+3) = >. Propose a new
set of abstract values and design the corresponding analysis that
fix this problem. Use the abstract values:

Ẑ = {e, o,>}

where e, o, > denote even, odd, all integers, respectively. It is
easy to define the corresponding V̂ for this domain.

3. (10pts) The next analysis focuses on finding out possible signs
of expressions. This sign analysis evaluates the expressions in
terms of their signs. The analysis uses four abstract values:

Ẑ = {⊕,�,	,>}

where ⊕, �, 	, > denote the integer sets:

γ(⊕) = {n ∈ Z | n > 0} γ(�) = {0}
γ() = {n ∈ Z | n < 0} γ(>) = Z

Note that this set is partially ordered as depicted as follows:

Define V̂ : e→ Ẑ for the sign analysis. For example,

• V̂(1 + 3) = ⊕
• V̂(−1 � −2) = 	
• V̂(2 + (−2 � 2)) = >
• V̂((2 � 3)∗) = ⊕.

V(n) =

 ⊕ n > 0
	 n < 0
� n = 0

V(−e) =


⊕ V(e) = 	
	 V(e) = ⊕
� V(e) = �
> V(e) = >

V(e1 + e2) =



⊕ V̂(e1) = ⊕ ∧ V̂(e2) = ⊕
⊕ V̂(e1) = ⊕ ∧ V̂(e2) = �
⊕ V̂(e1) = � ∧ V̂(e2) = ⊕
	 V̂(e1) = 	 ∧ V̂(e2) = 	
	 V̂(e1) = 	 ∧ V̂(e2) = �
	 V̂(e1) = � ∧ V̂(e2) = 	
� V̂(e1) = � ∧ V̂(e2) = �
> otherwise

V̂(e1 � e2) =


⊕ V̂(e1) = V̂(e2) = ⊕
	 V̂(e1) = V̂(e2) = 	
� V̂(e1) = V̂(e2) = �
> otherwise

V̂(e∗) =

 ⊕ V̂(e) = ⊕
� V̂(e) = �
> otherwise

4. (10pts) The last instance is the interval analysis that finds out
the possible ranges of values that a given expression produces.
The analysis uses the abstract values:

Ẑ = {[l, u] | l ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ l ≤ u}

Define V̂ : e→ Ẑ for the interval analysis. For example,

• V̂(1 + 3) = [4, 4]

• V̂(−1 � −2) = [−2,−1]
• V̂(2 + (−2 � 2)) = [0, 4]

• V̂((2 � 3)∗) = [2,+∞]

• V̂((−2 � 2)∗) = [−∞,+∞]

V̂(n) = [n, n]

V̂(−e) = [−u,−l] V̂(e) = [l, u]

V̂(e1 + e2) = [l1 + l2, u1 + u2] V̂(ei) = [li, ui] (i = 1, 2)

V̂(e1 � e2) = [min(l1, l2),max(u1, u2)] V̂(ei) = [li, ui] (i = 1, 2)

V̂(e∗) = [l < 0?−∞, l,+∞] V̂(e) = [l, u]

Problem 2 (Data-Flow Analysis, 15pts) Illustrate the following
data-flow analyses and their applications to compiler optimization.

1. Reaching definitions analysis

2. Available expressions analysis

3. Constant propagation analysis

Problem 3 (Use of Liveness Analysis, 10pts) Once the compiler
has computed the liveness information for each block in the pro-
cedure’s control-flow graph, we can find uses of variables that are
potentially uninitialized.

1. (5pts) Explain how to detect uninitialized variables using the
liveness information.

2. (5pts) This approach may yield false positives; the compiler
may report a use of a variable as uninitialized even when it is
always initialized at run-time. Discuss when/where false posi-
tives may occur.

Problem 4 (Interval Analysis, 15pts) Illustrate the interval analy-
sis for the program below. How does the analysis work? How does
the fixed point get computed? What is the final outcome of the anal-
ysis? etc.

Problem 5 (Register Allocation, 10pts) Consider the program:

1. (5pts) Compute the live-in and live-out sets for each basic
block:
live-in(B1) = {a, b, c, d} live-out(B1) = {b, c, e}
live-in(B2) = {b, c, e} live-out(B2) = {e, f}
live-in(B3) = {e, f} live-out(B3) = {d}
live-in(B4) = {e, f} live-out(B4) = {d}
live-in(B5) = {d} live-out(B5) = {g}

2. (5pts) Construct the register interference graph and find an
assignment of 4 registers to variables.

Problem 6 (10pts) What is a compiler? Illustrate compilers from
the perspectives of both language translators and program synthe-
sizers.

