COSE215: Theory of Computation

Lecture 8 — Properties of Regular Languages (2): Pumping Lemma

Hakjoo Oh 2019 Spring

Recap

The following are all equivalent:

- L is a regular language.
- There is a DFA D whose language is L.
- There is an NFA N whose language is L.
- There is a regular expression R whose language is L.

Some Fundamental Questions

• Are all languages regular?

• No, e.g., $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

- How to prove that a language is non-regular? Two methods:
 - Direct proof by Pigeonhole principle.
 - 2 By using the pumping lemma.

Intuition

- Regular languages can be recognized with finite memory.
- Non-regular languages cannot be recognized with finite memory.

Example 1: $L = \{a^n b^n \mid n \ge 0\}$

The intuition behind the proof:

- Suppose there is a DFA D that accepts L.
- Then, when D is run on any two of the strings ε, a, aa, aaa, ..., D must end in different states.
 - Assume a^n and a^m $(n \neq m)$ lead to the same state.
 - Then $a^n b^n$ and $a^m b^n$ must end up in the same state.
 - ► This is a contradiction because either aⁿbⁿ is rejected or a^mbⁿ is accepted.
- This is impossible because there are only finitely many states. We cannot put all these strings into different states.

Example 1: $L = \{a^n b^n \mid n \ge 0\}$

Proof with Pigeonhole principle (If you put more than n pigeons into n holes, then some hole has more than one pigeon.):

- Proof by contradiction.
- Assume L is regular.
- Then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognizing L.

Define:

- Pigeons = $\{a^n \mid n \ge 0\} = \{a, aa, aaa, \ldots\}$
- Holes = states in Q
- Put pigeon a^n into hole $\delta^*(q_0, a^n)$
 - \blacktriangleright i.e., the hole corresponding to the state reached by input a^n
- We have |Q| holes but more than |Q| pigeons (actually, infinitely many).
- So, two pigeons must be put in the same hole, say aⁱ and a^j, where i ≠ j.
 That is, aⁱ and a^j lead to the same state.
- Then, since M accepts $a^i b^i$, it also accepts $a^j b^i$, which is a contradiction.
- Thus, the original assumption that L is regular is false,
- That is, *L* is non-regular.

Example 2: $L = \{ww \mid w \in \{0,1\}^*\}$ is non-regular

- Show by contradiction, using Pigeonhole principle.
- Assume L is regular, so there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ recognizing L.
- Define:
 - Pigeons = $\{0^i 1 \mid i \geq 0\} = \{1, 01, 001, \ldots\}$
 - Holes = states in Q
- Put pigeon string $0^i 1$ into hole $\delta^*(q_0, 0^i 1)$
- By Pigeonhole principle, two pigeons share a hole, say $0^{i}1$ and $0^{j}1$, where $i \neq j$.
- So $0^i 1$ and $0^j 1$ lead to the same state.
- M accepts $0^i 10^i 1$, so does $0^j 10^i 1$, which is a contradiction.

The Pumping Lemma

Theorem (Pumping Lemma)

For any regular language L there exists an integer n, such that for all $x \in L$ with $|x| \ge n$, there exist $u, v, w \in \Sigma^*$, such that

- $\bullet x = uvw$
- $\textcircled{2} |uv| \leq n$
- $|v| \geq 1$
- for all $i \ge 0$, $uv^i w \in L$.

Proof of Pumping Lemma

- Let M be a DFA for L. Suppose M has n states.
- Take $x \in L$ with $|x| \ge n$, let m = |x|:

$$x = a_1 a_2 \dots a_m$$

- Let $p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Note $p_0 = q_0$ and p_m is a final state.
- Consider the first n+1 states: $p_0p_1\ldots p_n$.
- By Pigeonhole principle, two p_i and p_j with $0 \leq i < j \leq n$ share a state, i.e., $p_i = p_j$.
- Break x = uvw:
 - $u = a_1 a_2 \dots a_i$ $v = a_{i+1} a_{i+2} \dots a_i$
 - $w = a_{j+1}a_{j+2}\ldots a_m$
- Note that $\delta^*(p_0,u)=p_i,\,\delta^*(p_i,v)=p_i$, and $\delta^*(p_i,w)=p_m.$
- Thus, $\delta^*(p_0, uw) = p_m$, $\delta^*(p_0, uvw) = p_m$, $\delta^*(p_0, uv^2w) = p_m$, and so on.

Using Pumping Lemma to show non-regularity

- If L is regular, L satisfies pumping lemma?
- If L satisfies pumping lemma, L is regular?
- If L does not satisfy pumping lemma, then L is non-regular?

Pumping lemma can be used only for proving languages not to be regular.

Prove that $L = \{0^i 1^i \mid i \geq 0\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- If L is regular, then by P.L. there exists n such that ...
- Now let $x = 0^n 1^n$
- $x \in L$ and $|x| \ge n$, so by P.L. there exist u, v, w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x = 0^n 1^n = uvw$ with $|uv| \leq n$ and $|v| \geq 1$.

• So,
$$u=0^s, v=0^t, w=0^p1^n$$
 with

$$s+t\leq n, \quad t\geq 1, \quad p\geq 0, \quad s+t+p=n.$$

• Then (4) fails for i = 0:

 $uv^0w = uw = 0^s 0^p 1^n = 0^{s+p} 1^n \not\in L, \quad \text{since } s+p \neq n$

Prove that $L = \{ww^R \mid w \in \{a, b\}^*\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- If L is regular, then by P.L. there exists n such that ...
- Now let $x = a^n b^n b^n a^n$
- $x \in L$ and $|x| \ge n$, so by P.L. there exist u, v, w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x=a^nb^nb^na^n=uvw$ with $|uv|\leq n$ and $|v|\geq 1.$

$$ullet$$
 So, $u=a^s, v=a^t, w=a^pb^nb^na^n$ with

$$s+t \leq n, \quad t \geq 1, \quad p \geq 0, \quad s+t+p=n.$$

• Then (4) fails for i = 0:

 $uv^0w = uw = a^sa^pb^nb^na^n = a^{s+p}b^nb^na^n \not\in L,$ since $s+p \neq n$

Prove that $L = \{w \in \{a,b\}^* \mid n_a(w) < n_b(w)\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- If L is regular, then by P.L. there exists n such that ...
- Now let $x = a^n b^{n+1}$
- $x \in L$ and $|x| \ge n$, so by P.L. there exist u, v, w such that (1)–(4) hold.
- We show that for all u, v, w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x=a^nb^{n+1}=uvw$ with $|uv|\leq n$ and $|v|\geq 1.$

$$ullet$$
 So, $u=a^s, v=a^t, w=a^pb^{n+1}$ with

$$s+t\leq n,\quad t\geq 1,\quad p\geq 0,\quad s+t+p=n.$$

• Then (4) fails for i = 2:

$$uv^2w = a^s a^{2t} a^p b^{n+1} = a^{s+2t+p} b^{n+1} \not\in L,$$

since $s + 2t + p \ge n + 1$.

Prove that $L = \{a^n \mid n \text{ is a perfect square}\}$ is not regular.

- Show that pumping lemma (P.L.) does not hold.
- If L is regular, then by P.L. there exists n such that ...
- Now let $x = a^{n^2}$
- $x \in L$ and $|x| \ge n$, so by P.L. there exist u, v, w such that (1)–(4) hold.
- ${\scriptstyle \bullet}$ We show that for all u,v,w (1)–(4) do not all hold.
- If (1), (2), (3) hold then $x = a^{n^2} = uvw$ with $|uv| \le n$ and $|v| \ge 1$.
- Then, clearly $v=a^k$ with $1\leq k\leq n$.
- Then (4) fails for i = 0:

$$uv^0w = a^{n^2-k} \not\in L, \quad ext{since } n^2-k > (n-1)^2$$

Prove that $L = \{a^n b^k c^{n+k} \mid n \geq 0 \land k \geq 0\}$ is not regular.

• It is not difficult to apply the pumping lemma directly, but it is even easier to use closure under homomorphism. Take

$$h(a)=a, \quad h(b)=a, \quad h(c)=c,$$

then

$$h(L) = \{a^{n+k}c^{n+k} \mid n+k \ge 0\} = \{a^ib^i \mid i \ge 0\}.$$

We know this language is not regular.

• Also, we know that if a language L_1 is regular, then $h(L_1)$ is regular. Taking its contraposition, we conclude that L is not regular. cf) The converse of pumping lemma is not true

$$L = \{c^m a^n b^n \mid m \geq 1, n \geq 1\}$$

• L satisfies the pumping lemma.

- \blacktriangleright For any $x\in L$ of length ≥ 1 , we can take $u=\epsilon$,
 - v = the first letter of x (c), and w = the rest of x.
- However, *L* is not regular.
 - We can prove this using a general version of pumping lemma: For any regular language L, there exists $n \ge 1$ such that for every string $uvw \in L$ with $|w| \ge p$ such that
 - $\star \ uwv = uxyzv$

$$\star |xy| \leq n$$

$$\star |y| \geq 1$$

- \star For all $i \geq 0$, $uxy^i zv \in L$.
- Still, the converse of the general lemma is not true.
 - Languages that satisfy the lemma can still be non-regular.
 - For a necessary and sufficient condition to be regular, refer to Myhill-Nerode theorem.