COSE215: Theory of Computation Lecture 7 — Properties of Regular Languages (1)

> Hakjoo Oh 2019 Spring

Properties of Regular Languages

- Equivalence
- Closure properties
- "Pumping Lemma" for regular languages

Equivalence

When L, M, and N are regular expressions, does the following hold?

•
$$L + M = M + L$$

- (L+M) + N = L + (M+N)
- (LM)N = L(MN)
- LM = ML
- L(M+N) = LM + LN
- (M+N)L = ML + NL
- $(L^*)^* = L^*$
- $\emptyset^* = \epsilon$
- $\epsilon^* = \epsilon$

Closure Properties

If one (or several) languages are regular, then certain related languages are also regualr. E.g.,

- ullet Given regular languages L_1 and L_2 , $L_1\cup L_2$ is also regular.
- ullet Given regular languages L_1 and L_2 , $L_1\cap L_2$ is also regular.

We say the family of regular languages is *closed* under union and intersection.

Closure Properties

Regular languages are closed under:

- union
- difference
- complementation
- intersection
- reversal
- homomorphism
- . . .

Closure under Union

Theorem

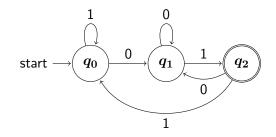
If L and M are regular languages, then so is $L \cup M$.

Closure under Complementation

Let L be a language and $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts L. Define a DFA B that accepts $\overline{L} = \Sigma^* - L$.

B =

ex) DFA A for $L = \{w01 \mid w \in \Sigma^*\}$ $((0+1)^*01)$:



Closure under Complementation

Theorem

If L is a regular language over alphabet Σ , then $\overline{L} = \Sigma^* - L$ is also a regular language.

Closure under Intersection

Theorem

If L and M are regular languages, then so is $L \cap M$.

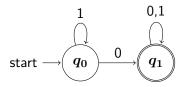
• Prove the theorem using previous results on union and compelment.

• Let $A_1 = (Q, \Sigma, \delta_1, q_0, F_1)$ and $A_2 = (P, \Sigma, \delta_2, p_0, F_2)$ be DFAs for L and M, respectively. Define a DFA A to accept $L \cap M$:

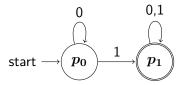
A =

Example

DFA to accept strings that have a 0:



DFA to accept strings that have a 1:



DFA to accept strings that have both 0 and 1:

Closure under Difference

Theorem

If L and M are regular languages, then so is L - M.

Closure under Reversal

Theorem

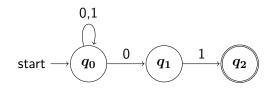
If L is a regular language, then so is L^R .

Let A be a ϵ -NFA that accepts L, then we can construct an automaton that accepts L^R as follows:

- **1** Reverse all the arcs in the transition graph for **A**.
- Make the start state of A be the only accepting state for the new automaton.
- Oreate a new start state p₀ with transitions on ε to all the accepting states of A.

Example

NFA that accepts $L = \{u01 \mid u \in \Sigma^*\}$:



NFA for $L^R = \{10u \mid u \in \Sigma^*\}$:

Closure under Homomorphism

Definition (Homomorphism)

Suppose Σ and Γ are alphabets. Then a function

$$h:\Sigma
ightarrow\Gamma^*$$

is called a homomorphism. For a given string $w = a_1 a_2 \cdots a_n$,

$$h(w) = h(a_1)h(a_2)\cdots h(a_n).$$

For a language L,

$$h(L)=\{h(w)\mid w\in L\}.$$

Theorem

If L is a regular language over Σ and h is a homomorphism on Σ , then h(L) is also regular.

Example

Let $\Sigma = \{0,1\}$ and $\Gamma = \{a,b\}$ and define h by

$$h(0) = ab, \qquad h(1) = \epsilon$$

Given any string of 0's and 1's, it replaces all 0's by the string ab and replaces all 1's by the empty string. For example,

h(0011) = abab.

If L is a language of regular expression 10^*1 , i.e., any number of 0's surrounded by 1's. Then h(L) is the language $(ab)^*$.