COSE215: Theory of Computation

Lecture 3 - Nondeterministic Finite Automata

Hakjoo Oh
2019 Spring

Definition

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where

- Q : a finite set of states
- Σ : a finite set of input symbols (or input alphabet)
- $q_{0} \in Q$: the initial state
- $\boldsymbol{F} \subseteq \boldsymbol{Q}$: a set of final states
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$: transition function

Example

$$
\begin{array}{cl}
\quad\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right) \\
\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} & \delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} \\
\delta\left(q_{1}, 0\right)=\emptyset & \delta\left(q_{1}, 1\right)=\left\{q_{2}\right\} \\
\delta\left(q_{2}, 0\right)=\emptyset & \delta\left(q_{2}, 1\right)=\emptyset
\end{array}
$$

cf) Compare with the equivalent DFA:

Extended Transition Function

$$
\delta^{*}: Q \times \Sigma^{*} \rightarrow 2^{Q}
$$

- (Basis) $s=\epsilon$:
- (Induction) $s=\boldsymbol{w a}$:

Example

$$
\begin{aligned}
\delta^{*}\left(q_{0}, 00101\right) & =\bigcup_{s_{i} \in \delta^{*}\left(q_{0}, 0010\right)} \delta\left(s_{i}, 1\right)=\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{0}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\} \\
\delta^{*}\left(q_{0}, 0010\right) & =\bigcup_{s_{i} \in \delta^{*}\left(q_{0}, 001\right)} \delta\left(s_{i}, 0\right)=\delta\left(q_{0}, 0\right) \cup \delta\left(q_{2}, 0\right)=\left\{q_{0}, q_{1}\right\} \cup \emptyset=\left\{q_{0}, q_{1}\right\} \\
\delta^{*}\left(q_{0}, 001\right) & =\bigcup_{s_{i} \in \delta^{*}\left(q_{0}, 00\right)} \delta\left(s_{i}, 1\right)=\delta\left(q_{0}, 1\right) \cup \delta\left(q_{1}, 1\right)=\left\{q_{0}\right\} \cup\left\{q_{2}\right\}=\left\{q_{0}, q_{2}\right\} \\
\delta^{*}\left(q_{0}, 00\right) & =\bigcup_{s_{i} \in \delta^{*}\left(q_{0}, 0\right)} \delta\left(s_{i}, 0\right)=\delta\left(q_{0}, 0\right) \cup \delta\left(q_{1}, 0\right)=\left\{q_{0}, q_{1}\right\} \cup \emptyset=\left\{q_{0}, q_{1}\right\} \\
\delta^{*}\left(q_{0}, 0\right) & =\bigcup_{s_{i} \in \delta^{*}\left(q_{0}, \epsilon\right)} \delta\left(s_{i}, 0\right)=\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} \\
\delta^{*}\left(q_{0}, \epsilon\right) & =\left\{q_{0}\right\}
\end{aligned}
$$

Exercise: Language of an NFA

The language of NFA $\boldsymbol{M}=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_{\mathbf{0}}, \boldsymbol{F}\right)$ is defined as follows:

$$
L(M)=\{\quad\}
$$

Exercises

Design NFAs for the following languages:
(1) $L=\left\{a^{n} b \mid n \geq 0\right\}$
(2) $L=\left\{x 01 y \mid x, y \in\{0,1\}^{*}\right\}$
(3) $L=\left\{01 w \mid w \in\{0,1\}^{*}\right\}$
(9) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains at least two 0 's $\}$
(5) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains exactly two 0 's $\}$
(0) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has three consecutive $\mathbf{0}$'s $\}$

Equivalence of DFA and NFA

Theorem (Equivalence)
A Language \boldsymbol{L} is accepted by some NFA if and only if \boldsymbol{L} is accepted by some DFA.

Proof.

By the two Lemmas below.

Lemma (DFA to NFA)

Given a DFA D, there always exists an NFA N such that $L(D)=L(N)$.

Lemma (NFA to DFA)

Given an NFA N, there always exists a DFA D such that $L(N)=L(D)$.

DFA to NFA

Lemma (DFA to NFA)

Given a DFA D, there always exists an NFA N such that $L(D)=L(N)$.
Proof) Assume a DFA $D=\left(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\boldsymbol{D}}, \boldsymbol{q}_{\mathbf{0}}, \boldsymbol{F}\right)$ is given. Define an NFA as follows:

$$
N=\left(Q, \boldsymbol{\Sigma}, \delta_{N}, q_{0}, F\right) \text { where } \delta_{N}(q, a)=\left\{\delta_{D}(q, a)\right\}
$$

To prove:

$$
L(D)=\left\{w \in \Sigma^{*} \mid \delta_{D}^{*}\left(q_{0}, w\right) \in F\right\}=\left\{w \in \Sigma^{*} \mid \delta_{N}^{*}\left(q_{0}, w\right) \cap F \neq \emptyset\right\}=L(N)
$$

It is enough to show that

$$
\delta_{N}^{*}\left(q_{0}, w\right)=\left\{\delta_{D}^{*}\left(q_{0}, w\right)\right\}
$$

The proof is by induction on $|\boldsymbol{w}|$.

- $\boldsymbol{w}=\epsilon$: By the definitions of δ_{D}^{*} and $\delta_{N}^{*}, \delta_{D}^{*}\left(q_{0}, \epsilon\right)=q_{0}$ and $\delta_{N}^{*}\left(q_{0}, \epsilon\right)=\left\{q_{0}\right\}$.
- $w=s a$:

$$
\begin{aligned}
\delta_{N}^{*}\left(q_{0}, s a\right) & =\bigcup_{s_{i} \in \delta_{N}^{*}\left(q_{0}, s\right)} \delta_{N}\left(s_{i}, a\right) & & \text { by definition of } \delta_{N}^{*} \\
& =\delta_{N}\left(\delta_{D}^{*}\left(q_{0}, s\right), a\right) & & \text { by I.H. } \\
& =\left\{\delta_{D}\left(\delta_{D}^{*}\left(q_{0}, s\right), a\right)\right\} & & \text { by definition of } \delta_{N} \\
& =\left\{\delta_{D}^{*}\left(q_{0}, s a\right)\right\} & & \text { by definition of } \delta_{D}^{*}
\end{aligned}
$$

NFA to DFA (Subset Construction)

Lemma (NFA to DFA)

Given an NFA N, there always exists a DFA D such that $L(N)=L(D)$.
Proof) Assume an NFA $\boldsymbol{N}=\left(\boldsymbol{Q}_{\boldsymbol{N}}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{\boldsymbol{N}}, \boldsymbol{q}_{0}, \boldsymbol{F}_{\boldsymbol{N}}\right)$. Define a DFA as follows

$$
D=\left(Q_{D}, \Sigma, \delta_{D},\left\{q_{0}\right\}, F_{D}\right)
$$

where

- $Q_{D}=2^{Q_{N}}$
- $\boldsymbol{F}_{D}=\left\{S \in \boldsymbol{Q}_{D} \mid \boldsymbol{S} \cap \boldsymbol{F}_{\boldsymbol{N}} \neq \emptyset\right\}$.
- For each $S \in Q_{D}$ and input symbol $a \in \Sigma$:

$$
\delta_{D}(S, a)=\bigcup_{p \in S} \delta_{N}(p, a)
$$

NFA to DFA

Then, we can prove $L(N)=L(D)$ by showing that

$$
\delta_{D}^{*}\left(\left\{q_{0}\right\}, w\right)=\delta_{N}^{*}\left(q_{0}, w\right)
$$

The proof is by induction on the length of \boldsymbol{w}.

- $\boldsymbol{w}=\epsilon$: By definition, $\delta_{D}^{*}\left(\left\{q_{0}\right\}, \epsilon\right)=\left\{q_{0}\right\}=\delta_{N}^{*}\left(q_{0}, \epsilon\right)$.
- $w=s a$: Induction hypothesis (I.H.):

$$
\begin{array}{rlrl}
& \delta_{D}^{*}\left(\left\{q_{0}\right\}, s\right)=\delta_{N}^{*}\left(q_{0}, s\right) . \\
\delta_{D}^{*}\left(\left\{q_{0}\right\}, s a\right)= & \delta_{D}\left(\delta_{D}^{*}\left(\left\{q_{0}\right\}, s\right), a\right) & & \text { by definition of } \delta_{D}^{*} \\
= & \delta_{D}\left(\delta_{N}^{*}\left(q_{0}, s\right), a\right) & & \text { by I.H. } \\
= & \bigcup_{p \in \delta_{N}^{*}\left(q_{0}, s\right)} \delta_{N}(p, a) & & \text { by definition of } \delta_{D} \\
= & \delta_{N}^{*}\left(q_{0}, s a\right) & & \\
\text { by definition of } \delta_{N}^{*}
\end{array}
$$

Example: Subset Construction

Find a DFA that is equivalent to:

$$
\begin{array}{ll}
N=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{0},\left\{q_{2}\right\}\right) \\
\delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} & \delta\left(q_{0}, 1\right)=\left\{q_{0}\right\} \\
\delta\left(q_{1}, 0\right)=\emptyset & \delta\left(q_{1}, 1\right)=\left\{q_{2}\right\} \\
\delta\left(q_{2}, 0\right)=\emptyset & \delta\left(q_{2}, 1\right)=\emptyset
\end{array}
$$

Example: Subset Construction

$$
D=\left(Q_{D},\{0,1\}, \delta_{d},\left\{q_{0}\right\}, F_{D}\right)
$$

- $Q_{D}=2^{\left\{q_{0}, q_{1}, q_{2}\right\}}=\left\{\emptyset,\left\{q_{0}\right\},\left\{q_{1}\right\}, \ldots,\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$
- $\boldsymbol{F}_{D}=\left\{\left\{q_{2}\right\},\left\{q_{0}, q_{2}\right\},\left\{q_{1}, q_{2}\right\},\left\{q_{0}, q_{1}, q_{2}\right\}\right\}$
- δ_{D} :

	0	1
\emptyset	\emptyset	\emptyset
$\rightarrow\left\{q_{0}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$\left\{q_{1}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$*\left\{q_{2}\right\}$	\emptyset	\emptyset
$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
$*\left\{q_{0}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
$*\left\{q_{1}, q_{2}\right\}$	\emptyset	$\left\{q_{2}\right\}$
$*\left\{q_{0}, q_{1}, q_{2}\right\}$	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$

Example: Subset Construction

