COSE215: Theory of Computation

Lecture 20 - P, NP, and NP-Complete Problems

Hakjoo Oh
2019 Spring

Contents ${ }^{1}$

- \mathcal{P} and $\boldsymbol{\mathcal { N }} \boldsymbol{\mathcal { P }}$
- Polynomial-time reductions
- NP-complete problems
${ }^{1}$ Slides are partly based on Siddhartha Sen's ("P, NP, and NP-Completeness")

Problems Solvable in Polynomial Time (\mathcal{P})

- A Turing machine M is said to be of time complexity $\boldsymbol{T}(\boldsymbol{n})$ if whenever \boldsymbol{M} is given an input \boldsymbol{w} of length $\boldsymbol{n}, \boldsymbol{M}$ halts after making at most $\boldsymbol{T}(\boldsymbol{n})$ moves, regardless of whether or not \boldsymbol{M} accepts.
- E.g., $T(n)=5 n^{2}, T(n)=3^{n}+5 n^{4}$
- Polynomial time: $T(n)=a_{0} n^{k}+a_{1} n^{k-1}+\cdots+a_{k} n+a_{k+1}$
- We say a language L is in class \mathcal{P} if there is some polynomial $\boldsymbol{T}(\boldsymbol{n})$ such that $L=\boldsymbol{L}(\boldsymbol{M})$ for some deterministic TM \boldsymbol{M} of time complexity $T(n)$.
- Problems solvable in polynomial time are called tractable.

Example: Kruskal's Algorithm

A greedy algorithm for finding a minimum-weight spanning tree for a weighted graph.

- a spanning tree: a subset of the edges such that all nodes are connected through these edges
- a minimum-weight spanning tree: a spanning tree with the least total weight

Example: Kruskal's Algorithm

- Consider the edge $(1,3)$ with the lowest weight (10). Because nodes 1 and 3 are not contained in \boldsymbol{T} at the same time, include the edge in \boldsymbol{T}.
- Consider the next edge in order of weights: $(2,3)$. Since 2 and 3 are not in \boldsymbol{T} at the same time, include $(2,3)$ in \boldsymbol{T}.
- Consider the next edge: (1,2). Nodes 1 and 2 are in \boldsymbol{T}. Reject $(1,2)$.
- Consider the next edge $(3,4)$ and include it in \boldsymbol{T}.
- We have three edges for the spanning tree of a 4-node graph, so stop.

The algorithm takes $O(m+e \log e)$ steps $\left(O\left(n^{2}\right)\right.$ for multitape TM).

Nondeterministic Polynomial Time $(\boldsymbol{\mathcal { N }} \boldsymbol{\mathcal { P }})$

- We say a language L is in the class $\boldsymbol{\mathcal { N } \mathcal { P }}$ (nondeterministic polynomial) if there is a nondeterministic TM M and a polynomial time complexity $\boldsymbol{T}(\boldsymbol{n})$ such that $L=\boldsymbol{L}(\boldsymbol{M})$, and when \boldsymbol{M} is given an input of length n, there are no sequences of more than $\boldsymbol{T}(\boldsymbol{n})$ moves of \boldsymbol{M}.
- Example: TSP (Travelling Salesman Problem)
- finding a hamiltonian cycle (i.e., a cycle that contains all nodes and each node exactly once) with minimum cost: e.g.,

- To solve TSP, we need to try an exponential number of cycles and compute their total weight. Thus, TSP may not be in \mathcal{P}. TSP is in $\boldsymbol{\mathcal { N }} \mathcal{P}$ because NTM can guess an exponential number of possible solutions and checking a hamiltonian cycle can be done in polynomial time.

$\mathcal{P}=\mathcal{N} \mathcal{P} ?$

One of the deepest open problems.

- In words: everything that can be done in polynomial time by an NTM can in fact be done by a DTM in polynomial time?
- $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$ because every deterministic TM is a nondeterministic TM.
- $\mathcal{P} \supseteq \boldsymbol{\mathcal { N }} \mathcal{P}$? Probably not. It appears that $\boldsymbol{\mathcal { N }} \mathcal{P}$ contains many problems not in \mathcal{P}. However, no one proved it.

Implications of $\mathcal{P}=\mathcal{N} \mathcal{P}$

If $P=N P$, then the world would be a profoundly different place than we usually assume it to be. There would be no special value in "creative leaps," no fundamental gap between solving a problem and recognizing the solution once it's found. Everyone who could appreciate a symphony would be Mozart; everyone who could follow a step-by-step argument would be Gauss; everyone who could recognize a good investment strategy would be Warren Buffett.

\author{

- Scott Aaronson
}

NP-Complete Problems

- NP-complete problems are the "hardest" problems in the NP class.
- If any NP-complete problem can be solved in polynomial time, then all problems in NP are solvable in polynomial time.
- How to compare easiness/hardness of problems?

Problem Solving by Reduction

- $\boldsymbol{L}_{\mathbf{1}}$: the language (problem) to solve
- $\boldsymbol{L}_{\mathbf{2}}$: the problem for which we have an algorithm to solve
- Solve \boldsymbol{L}_{1} by reducing \boldsymbol{L}_{1} to $\boldsymbol{L}_{\mathbf{2}}\left(\boldsymbol{L}_{\mathbf{1}} \leq \boldsymbol{L}_{2}\right)$ via function \boldsymbol{f} :
(1) Convert input x of L_{1} to instance $f(x)$ of L_{2}

$$
\star x \in L_{1} \Longleftrightarrow f(x) \in L_{2}
$$

(2) Apply the algorithm for L_{2} to $f(x)$

- Running time $=$ time to compute $f+$ time to apply algorithm for $\boldsymbol{L}_{\mathbf{2}}$
- We write $L_{1} \leq_{P} L_{\mathbf{2}}$ if $f(\boldsymbol{x})$ is computable in polynomial time

Reductions show easiness/hardness

- To show L_{1} is easy, reduce it to something we know is easy
- $L_{1} \leq_{P}$ easy
- Use algorithm for easy language to decide $\boldsymbol{L}_{\mathbf{1}}$
- To show $\boldsymbol{L}_{\mathbf{1}}$ is hard, reduce something we know is hard to it (e.g., NP-complete problem)
- hard $\leq_{P} L_{1}$
- If $\boldsymbol{L}_{\mathbf{1}}$ was easy, hard would be easy too

NP-Complete Problems

We say \boldsymbol{L} is NP-complete if
(1) L is in $\mathcal{N} \mathcal{P}$
(2) For every language \boldsymbol{L}^{\prime} in $\boldsymbol{\mathcal { N } \mathcal { P }}$, there is a polynomial time reduction of \boldsymbol{L}^{\prime} to \boldsymbol{L} (i.e., $\boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$)

The Boolean Satisfiability Problem

Determine if the given boolean formula can be true.

- $\boldsymbol{x} \wedge \neg \boldsymbol{x}$
- $\boldsymbol{x} \wedge \neg(\boldsymbol{y} \vee \boldsymbol{z})$

The first problem proven to be NP-complete.
Theorem (Cook-Levin)
SAT is NP-complete.
We need to show that
(1) SAT is NP, and
(2) for every L in NP, there is a polynomial-time reduction of L to SAT.

Many problems in artificial intelligence, automatic theorem proving, circuit design, etc reduce to the SAT problem.

Summary

The classes of problems that we have considered:

- Undecidable
- Recursively enumerable
- Not recursively enumerable
- Decidable
- \mathcal{P}
- $\mathcal{N} \mathcal{P}$
- NP-complete

