COSE215: Theory of Computation Lecture 13 — Properties of Context-Free Languages (1)

> Hakjoo Oh 2019 Spring

Properties of CFLs

- Normal forms for CFGs
- Pumping lemma for CFLs
- Closure properties for CFLs

Chomsky Normal Form

Definition

A CFG is in Chomsky Normal Form (CNF), if its all productions are of the form

 $A \to BC \text{ or } A \to a$

Theorem

Every CFL (without ϵ) has a CFG in CNF.

Preliminary Simplications

- Elimination of useless symbols
- **2** Elimination of ϵ -productions
- Ilimination of unit productions

Useless Symbols

Definition (Useful/Useless Symbols)

A symbol X is useful for a grammar G = (V, T, S, P) if there is some derivation of the form $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$, where $w \in T^*$. Otherwise, X is useless.

Eliminating Useless Symbols

Identify generating and reachable symbols.

- X is generating if $X \Rightarrow^* w$ for some terminal string w.
- X is reachable if $S \Rightarrow^* \alpha X \beta$ for some α and β .

2 Remove non-generating symbols, and then non-reachable symbols.

- Find generating symbols:
- Remove non-generating symbols:
- Ind reachable symbols:
- Remove non-reachable symbols:

Correctness of Useless Symbol Elimination

Theorem

Let G = (V, T, S, P) be a CFG and assume that $L(G) \neq \emptyset$. Let G_2 be the grammar obtained by running the following procedure:

- Solution Eliminate non-generating symbols and all productions involving those symbols. Let $G_2 = (V_2, T_2, S, P_2)$ be this new grammar.
- 2 Eliminate all symbols that are not reachable in the grammar G_2 . Let G_1 be the result.

Then, G_1 has no useless symbols, and $L(G) = L(G_1)$.

Finding Generating and Reachable Symbols

- The sets of generating and reachable symbols are defined inductively.
- **2** We can compute inductive sets via an iterative fixed point algorithm.

Inductive Definition of Generating Symbols

Definition (Generating Symbols)

Let G = (V, T, S, P) be a grammar. The set of generating symbols of G is defined as follows:

- Basis: The set includes every symbol of T.
- Induction: If there is a production $A \to \alpha$ and the set includes every symbol of α , then the set includes A.

Note that the definition is non-constructive.

Computing the Set of Generating Symbols

An iterative fixed point algorithm:

 $egin{aligned} Y &:= T \ repeat \ Y' &:= Y \ Y &:= Y \cup \{A \mid (A
ightarrow lpha) \in P, Y ext{ includes every symbol of } lpha \} until \ Y &= Y' \end{aligned}$

$$egin{array}{cccc} S &
ightarrow & AB \mid a \ A &
ightarrow & b \end{array}$$

• The fixed point iteration for finding generating symbols:

Inductive Definition of Reachable Symbols

Definition (Reachable Symbols)

Let G = (V, T, S, P) be a grammar. The set of reachable symbols of G is defined as follows:

• Basis: The set includes S.

• Induction: If the set includes A and there is a production $A \to X_1 \dots X_k$, then the set includes X_1, \dots, X_k .

 $egin{aligned} Y &:= \{S\} \ repeat \ Y' &:= Y \ Y &:= Y \cup \{X_1, \dots, X_k \mid A \in Y, (A
ightarrow X_1, \dots, X_k) \in P\} \ until \ Y &= Y' \end{aligned}$

$$egin{array}{cccc} S &
ightarrow & AB \mid a \ A &
ightarrow & b \end{array}$$

• The fixed point iteration for finding reachable symbols:

Eliminating ϵ -Productions $(A \rightarrow \epsilon)$

- Find *nullable* variables.
- 2 Construct a new grammar, where nullable variables are replaced by ϵ in all possible combinations.

Nullable Variables

Definition

A variable A is *nullable* if $A \Rightarrow^* \epsilon$.

Nullable Variables

Definition

A variable A is nullable if $A \Rightarrow^* \epsilon$.

Definition (Inductive version)

Let G = (V, T, S, P) be a grammar. The set of nullable variables of G is defined as follows:

- Basis: If $A
 ightarrow \epsilon$ is a production of G, then the set includes A.
- Induction: If there is a production $B \to C_1 \dots C_k$, where every C_i is included in the set, then the set includes B.

$$egin{aligned} Y &:= \{A \mid (A
ightarrow \epsilon) \in P\} \ repeat \ Y' &:= Y \ Y &:= Y \cup \{B \mid (B
ightarrow C_1 \ldots C_k) \in P, C_i \in Y ext{ for every } i\} \ until \ Y &= Y' \end{aligned}$$

Eliminate ϵ -Productions

Let G = (V, T, S, P) be a grammar. Construct a new grammar

 (V,T,S,P_1)

where P_1 is defined as follows.

For each production $A o X_1 X_2 \dots X_k$ of P, where $k \ge 1$

- **1** Put $A o X_1 X_2 \dots X_k$ into P_1
- 2 Put into P_1 all those productions generated by replacing nullable variables by ϵ in all possible combinations. If all X_i 's are nullable, do not put $A \rightarrow \epsilon$ into P_1 .

$$egin{array}{rcl} S &
ightarrow & AB \ A &
ightarrow & aAA \mid \epsilon \ B &
ightarrow & bBB \mid \epsilon \end{array}$$

- The set of nullable symbols:
- The new grammar without ϵ -productions:

Eliminating Unit Productions

A unit production is of the form A
ightarrow B, e.g.,

Eliminating Unit Productions

Given G = (V, T, S, P),

- Find all unit pairs of variables (A, B) such that A ⇒* B using a sequence of unit productions only.
- **2** Define $G_1 = (V, T, S, P_1)$ as follows. For each unit pair (A, B), add to P_1 all the productions $A \to \alpha$ where $B \to \alpha$ is a non-unit production in P.

E.g.,

$$egin{array}{rcl} S &
ightarrow & Aa \mid B \ B &
ightarrow & A \mid bb \ A &
ightarrow & a \mid bc \mid B \end{array}$$

- Unit pairs:
- The grammar without unit productions:

Eliminating Unit Productions

Theorem (Correctness)

If grammar G_1 is constructed from grammar G by the algorithm for eliminating unit productions, then $L(G_1) = L(G)$.

Finding Unit Pairs

Definition (Unit Pairs)

Let G = (V, T, S, P) be a grammar. The set of unit pairs is defined as follows:

- Basis: (A, A) is a unit pair for any variable A.
- Induction: Suppose we have determined that (A, B) is a unit pair, and $B \to C$ is a production, where C is a variable. Then (A, C) is a unit pair.

}

$$Y := \{$$

$$repeat$$

$$Y' := Y$$

$$Y := Y \cup \{$$

$$until \ Y = Y'$$

$$egin{array}{rcl} S &
ightarrow & Aa \mid B \ B &
ightarrow & A \mid bb \ A &
ightarrow & a \mid bc \mid B \end{array}$$

The fixed point computation proceeds as follows:

$$\begin{split} &\{(S,S),(A,A),(B,B)\},\\ &\{(S,S),(A,A),(B,B),(S,B),(B,A),(A,B)\},\\ &\{(S,S),(A,A),(B,B),(S,B),(B,A),(A,B),(S,A)\}\\ &\{(S,S),(A,A),(B,B),(S,B),(B,A),(A,B),(S,A)\} \end{split}$$

Putting them together

Apply them in the following order:

- **1** Eliminate ϵ -productions
- 2 Eliminate unit productions
- Eliminate useless symbols

Theorem

If G is a CFG generating a language that contains at least one string other than ϵ , then there is another CFG G_1 such that $L(G_1) = L(G) - \{\epsilon\}$, and G_1 has no useless symbols, ϵ -productions, or unit-productions.

Proof.

Chomsky Normal Form

Definition (Chomsky Normal Form)

A grammar G is in CNF if all productions in G are either

O A
ightarrow BC, where A, B, and C are variables

 ${f Q}$ A
ightarrow a, where A is a variable and a is a terminal

Further, G has no useless symbols.

Putting CFG in CNF

- Start with a grammar without useless symbols, ε-productions, and unit productions.
- ² Each production of the grammar is either of the form $A \rightarrow a$, which is already in a form allowed by CNF, or it has a body of length 2 or more. Do the following:
 - Arrange that all bodies of length 2 or more consist only of variables. To do so, if terminal a appears in a body of length 2 or more, replace it by a new variable, say A and add A → a.
 - Preak bodies of length 3 or more into a cascade of productions, each with a body consisting of two variables. To do so, we break production $A \rightarrow B_1 B_2 \dots B_k$ into a set of productions

$$A \rightarrow B_1C_1,$$

$$C_1 \rightarrow B_2C_2,$$

$$\dots,$$

$$C_{k-3} \rightarrow B_{k-2}C_{k-2},$$

$$C_{k-2} \rightarrow B_{k-1}B_k$$

Summary

- Every CFG can be transformed into a CFG in CNF
- To do so,
 - () Apply ϵ -production, unit production, useless symbols eliminations
 - Arrange and break remaining productions.