COSE215: Theory of Computation

Lecture 12 — Pushdown Automata (2)

Hakjoo Oh 2019 Spring

Contents

- Configuration of PDA
- Language of PDA
 - Acceptance by final state
 - Acceptance by empty stack
- Equivalence of CFG and PDA
- Deterministic PDA

Configurations of PDA

- A configuration of a PDA consists of the automaton state and the stack contents.
- ullet The configuration or instantaneous description (ID) is represented by (q,w,γ) , where
 - q is the state,
 - w is the remaining input, and
 - γ is the stack contents.
- Suppose $(q, aw, X\beta)$ is a configuration and $(p, \alpha) \in \delta(q, a, X)$. Then, the configuration moves in one step to $(p, w, \alpha\beta)$:

$$(q,aw,Xeta) \vdash (p,w,lphaeta)$$

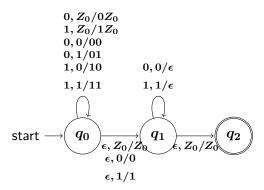
The Language of Pushdown Automata

Definition (Acceptance by Final State)

Let $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ be a PDA. Then L(P), the language of P by final state, is

$$L(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \alpha) \}$$

for some state $q \in F$ and any stack string lpha.



The PDA contains 1111, because $(q_0, 1111, Z_0) \vdash^* (q_2, \epsilon, Z_0)$.

Another Way of Defining The Language of a PDA

Definition (Acceptance by Empty Stack)

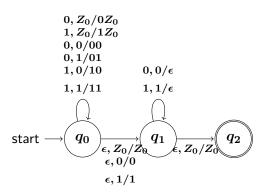
Let $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ be a PDA. Then N(P), the language of P accepted by empty stack, is

$$N(P) = \{ w \in \Sigma^* \mid (q_0, w, Z_0) \vdash^* (q, \epsilon, \epsilon) \}$$

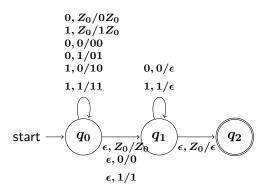
for any q.

When accepting by empty stack, we omit the $m{F}$ component:

$$(Q,\Sigma,\Gamma,\delta,q_0,Z_0)$$



- \bullet L(P) =
- \bullet N(P) =



$$\bullet$$
 $L(P) =$

$$\bullet$$
 $N(P) =$

Equivalence

Theorem (Equivalence of Final State and Empty Stack)

For any language L, there exists a PDA P_F such that $L=L(P_F)$ iff there exists a PDA P_N such that $L=N(P_N)$.

Lemma (From Empty Stack to Final State)

For any PDA $P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0)$, there is a PDA P_F such that $N(P_N)=L(P_F)$.

Lemma (From Final State to Empty Stack)

For any PDA $P_F=(Q,\Sigma,\Gamma,\delta_F,q_0,Z_0,F)$, there is a PDA P_N such that $N(P_N)=L(P_F)$.

From Empty Stack to Final State

Given
$$P_N=(Q,\Sigma,\Gamma,\delta_N,q_0,Z_0)$$
, define

$$P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$$

where

- $\bullet \ \delta_F(p_0,\epsilon,X_0) = \{(q_0,Z_0X_0)\}$
- ② For all $q\in Q$, $a\in \Sigma\cup\{\epsilon\}$, and $Y\in \Gamma$, $\delta_F(q,a,Y)$ contains $\delta_N(q,a,Y)$.
- \bullet For all $q \in Q$, $\delta_F(q, \epsilon, X_0)$ contains (p_f, ϵ) .

Then, w is in $L(P_F)$ if and only if w is in $N(P_N)$.

From Final State to Empty Stack

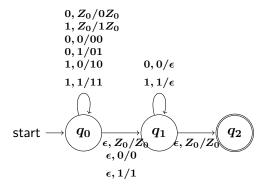
Given $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$, define

$$P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$$

where

- ② For all $q\in Q$, $a\in \Sigma\cup\{\epsilon\}$, and $Y\in \Gamma$, $\delta_N(q,a,Y)$ includes $\delta_F(q,a,Y)$.
- ullet For all accepting states $q\in F$ and $Y\in \Gamma\cup \{X_0\}$, $\delta_N(q,\epsilon,Y)$ includes (p,ϵ) .
- lacksquare For all stack symbols $Y \in \Gamma \cup \{X_0\}$, $\delta_N(p,\epsilon,Y) = \{(p,\epsilon)\}$.

Convert the following PDA to a PDA that accepts that same language by empty stack:



Equivalence of PDA's and CFG's

The following three classes of languages:

- The context-free languages, i.e., the languages defined by CFG's.
- The languages that are accepted by final state by some PDA.
- The languages that are accepted by empty stack by some PDA. are all the same class.

From CFG to PDA

Given a CFG G = (V, T, S, P), define a PDA P (by empty stack):

$$P = (\{q\}, T, V \cup T, \delta, q, S)$$

where

ullet For each variable $A \in V$,

$$\delta(q,\epsilon,A) = \{(q,\beta) \mid (A \to \beta) \text{ is in } G\}$$

ullet For each terminal $a \in T$,

$$\delta(q,a,a) = \{(q,\epsilon)\}$$

$$G = (\{B\}, \{(,)\}, P, B)$$
$$B \to BB \mid (B) \mid \epsilon$$

Deterministic Pushdown Automata

Definition

A pushdown automata $P=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ is a deterministic pushdown automata (DPDA) if P makes at most one move at a time, i.e.,

- $\ \, |\delta(q,a,X)| \leq 1 \text{ for any } q \in Q \text{, } a \in \Sigma \cup \{\epsilon\} \text{, and } X \in \Gamma.$
- ② If $\delta(q,a,X) \neq \emptyset$ for some $a \in \Sigma$, then $\delta(q,\epsilon,X) = \emptyset$.

Definition

A language L is said to be a deterministic context-free language iff there exists a DPDA P such that L=L(P).

The language

$$L=\{a^nb^n\mid n\geq 0\}$$

is a deterministic context-free language.

Fact1: DCFLs are CFLs

The language

$$L = \{ww^R \mid w \in \{a,b\}^*\}$$

is *not* a deterministic context-free language.

Fact2: DCFLs do not include some CFLs

Regular Languages and DCFLs

Fact3: DCFLs include all RLs

Theorem

If L is a regular language, then L=L(P) for some DPDA P.

Proof.

Let $A=(Q,\Sigma,\delta_A,q_0,F)$ be a DFA. Construct DPDA

$$P = (Q, \Sigma, \{Z_0\}, \delta_p, q_0, Z_0, F)$$

where define $\delta_p(q,a,Z_0)=\{(p,Z_0)\}$ for all p and q such that $\delta_A(q,a)=p$. Then, $(q_0,w,Z_0)\vdash^*(p,\epsilon,Z_0)$ iff $\delta_A^*(q_0,w)=p$.

DPDA's and Ambiguous Grammars

Fact4: All DCFLs have unambiguous grammars.

Theorem

If L=L(P) for some DPDA P, then L has an unambiguous grammar.

Fact5: DCFLs do not include all unambiguous CFLs.

The language

$$L = \{ww^R \mid w \in \{a, b\}^*\}$$

has an unambiguous grammar

$$S
ightarrow aSa \mid bSb \mid \epsilon$$

but not a DPDA language.

Summary

- PDA = FA with a stack
- PDA is more powerful than FA. Cover all CFLs.
 - ▶ Still limited, e.g., $\{ww \mid w \in \Sigma^*\}$.
- DPDA is between FA and PDA

In general,

- FA with an external storage
 - queue, two stacks, random access memory, . . . ?
 - increase the language-recognizing power?