COSE215: Theory of Computation

Lecture 10 — Parse Trees and Ambiguity

Hakjoo Oh
2019 Spring

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 1/20

Tree Representation for Derivations
Consider the context-free grammar for expressions:
G - ({E7 I}’ {+7 *’ (7)7 a’ b’ 07 1}’ E’ P)

E —» I|E+E|ExE|(E)

I - al|b|Ia|Ib|IO0]|I1
A (partial) derivation:

E=FE+4+FE=I+E=1T1+1.

The tree representationfor the derivation:

|
1 1
The tree is called parse tree or derivation tree.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 2 /20

Derivation and Parse Tree

@ A derivation uniquely defines a parse tree? yes or no.

@ A parse tree uniquely defines a derivation? yes or no.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 3 /20

Formal Definition

Definition (Parse Trees)

Let G = (V, T, S, P) be a grammar. The parse trees for G are trees with
the following conditions:

© The root is S, the start variable.
© Each interior node is labeled by a variable in V.

© Each leaf is labeled by either a variable, a terminal, or €. However, if
the leaf is labeled €, it must be the only child of its parent.

@ If an interior node is labeled A, and its children are labeled
X17X2a""Xk:

respectively, from the left, then A — X7, Xo,..., Xg is a
production in P.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 4/20

Example 1: Expressions

G = ({EaI}7{+7*a (7)90'9 b,O,l},E,P)

E — I|E+E|ExE|(E)
I - a|b|Ia|Ib|I0|I1

A parse tree:

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 5/ 20

Example 2: Palindromes

G = ({P},{0,1}, P, A)
P — €|0|1|0PO0]|1P1

A parse tree:

P
o P 0
T
1 P 1
|
€

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 6 /20

Yields

Definition (Yields)
The string obtained by concatenating the leaves of a parse tree from the
left is called the yield of the tree.

E P
I /’\
E + FE
| 0 P 0
I /’\

1 P 1
\
€

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 7 /20

Relationship between Parse Trees and Derivations

Theorem

Let G = (V,T, S, P) be a context-free grammar. Then, the following are
equivalent:

Q@ S="w.
Q S =, w.
Q@ S=;, w

© There is a parse tree whose yield is w.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 8 /20

Ambiguous and Unambiguous Grammars

Definition
A context-free grammar is ambiguous if there exists some w € L(G) that

has at least two distinct parse trees. If each string has at most one parse
tree, the grammar is unambiguous.

Theorem

For each grammar G = (V, T, S, P) and string w € T™*, w has two
distinct parse trees if and only if w has two distinct leftmost derivations
from S.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 9 /20

Example
The grammar of expressions:
G = ({E7I}7{+7*a (7)9019 b, 0, 1}5E7 P)

E —» I|E4+E|ExE|(E)
I - a|b|Ia|Ib|IO0|I1
Two distinct parse trees for a + a * a:

FE FE

FE + E FE * FE
\ T T \
I E % E E + E I
\ \ \ \ \ \
a I I I I a

\ \ \ \

a a a a

Hakjoo Oh COSE215 2019 Spring, Lecture 10

April 29,2019 10/ 20

Example

The grammar of expressions:
G=({E,1},{+,%,(,),a,b,0,1}, E, P)

E — I|E+E|ExE|(E)
I — a|b|Ia|Ib|IO0]|I1
Two distinct leftmost derivations for a + a * a:

o F==F+FE=I1I+F=a+F=a+FExFE=>a+1xFE =
at+axE=a+axI=a+ax*xa

o F==F+«F=FE+ExE=1I1+FExFEF=a+FEFx*xFE =
a+IxF=a+axF=a+axI =a+axa

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 11 /20

General Facts

We would like to transform ambiguous grammars into unambiguous ones.
However,

@ There is no algorithm to remove ambiguity from a CFG.

@ There is no algorithm that can even tell us whether a CFG is
ambiguous or not.

@ There are context-free languages that are inherently ambiguous; for
these languages, removing the ambiguity is impossible.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 12 /20

Finding an unambiguous grammar is possible in practice

@ Fortunately, for the sorts of constructs that appear in common
programming languages, there are well-known techniques to eliminate

ambiguity.
@ An ambiguous grammar:

E — I|E+E|E+E|(E)
I - al|b|Ia|Ib|IO0|I1

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 13 /20

Finding an unambiguous grammar is possible in practice

@ Fortunately, for the sorts of constructs that appear in common
programming languages, there are well-known techniques to eliminate
ambiguity.

@ An ambiguous grammar:

E — I|E+E|E+E|(E)
I - al|b|Ia|Ib|IO0|I1

@ An equivalent but unambiguous grammar:

a|b|Ia|Ib|I0|I1
1| (E)

F|TxF
T|E+T

BNN~
L1414

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 13 /20

Example

The only parse tree for a + a * a:

FE
E + T
| T
T T % F
| | |
F F I
| | |
I I a
I I
a a

Hakjoo Oh COSE215 2019 Spring, Lecture 10

Eliminating Ambiguity

Let us first analyze why the following grammar is ambiguous.

E — I|E+E|ExE|(E)
I — a|b|Ia|Ib|IO]|I1

@ The grammar does not respect the precedence of operators.

» Conventionally, we give higher precedence to * over 4+, e.g., 1 4+ 2 % 3.
» We need to enforce the common precedence rule in the grammar.

@ The grammar does not respect the associativity of operators.

» We assume that operators associate to the left, e.g., 1 + 2 + 3 should
be parsed as (1 + 2) + 3.
» We need to enforce the common associativity rule in the grammar.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 15 /20

Eliminating Ambiguity

To enforce precedence, classify expressions into factors, terms, and
expressions:
@ A factor is either an identifier or a parenthesized expressions, e.g.,

a,b,(a+b),(axb),...

In grammar:

F—>1]|(E)
@ A term is either a produce of one or more factors, e.g.,
a,b,(a+b),(axb),axb,ax*(a+b),ax*(axb),...

In grammar
T—>F|T=x+F

@ An expression is a sum of one or more terms, e.g.,
a*xb,ax(a+b),axb+ax(a+b),...

In grammar
E—-T|E+T

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 16 / 20

Eliminating Ambiguity

The unambiguous grammar:

a|b|Ia|Ib|I0|I1
I (E)

F|T+F

T|E+T

NN~
111l

Questions:
@ How does it enforce left associativity?
@ How can we modify the grammar to enforce right associativity?

@ |s the above grammar really unambiguous?

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 17 /20

Inherent Ambiguity

@ In the previous example, ambiguity is involved in the grammar.

@ For some languages, ambiguity is inherent as it is involved in the
language itself. In this case, all of the grammars for the language are
ambiguous.

Definition
A language L is inherently ambiguous if every grammar that generates L
is ambiguous.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 18 / 20

Example

Consider the language:
L =1L;ULs

where
Ly ={a"b"c™ | n,m >0}, Ly = {a"b™c™ |n,m > 0}

A context-free grammar:

S — Sl | Sz
Sl — Slc | A
A — aAb]|e
S — aSs | B
B — bBc|e

@ Why is the grammar ambiguous?

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 19 /20

Summary

o Context-free grammars: A way of describing languages by recursive
rules called productions.

@ Derivations: Beginning with the start symbol, we can derive terminal
strings by repeatedly applying production rules.

o Context-free languages: The language of a CFG is the set of terminal
strings that can be derived. Such a language is called context-free.

@ Parse trees: A tree representation for a derivation.

@ Ambiguous grammars: Grammars that have two different parse trees
for a terminal string.

o Eliminating ambiguity: For many useful grammars, it is possible to
find unambiguous grammars. However, the unambiguous grammar is
typically more complex than the original.

@ Inherent ambiguity: There are some context-free languages that do
not have unambiguous grammars.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 20 / 20

