
COSE215: Theory of Computation

Lecture 10 — Parse Trees and Ambiguity

Hakjoo Oh
2019 Spring

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 1 / 20



Tree Representation for Derivations

Consider the context-free grammar for expressions:

G = ({E, I}, {+, ∗, (, ), a, b, 0, 1}, E, P )

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1
A (partial) derivation:

E ⇒ E + E ⇒ I + E ⇒ I + I.

The tree representationfor the derivation:

E

E

I

+ E

I

The tree is called parse tree or derivation tree.
Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 2 / 20



Derivation and Parse Tree

A derivation uniquely defines a parse tree? yes or no.

A parse tree uniquely defines a derivation? yes or no.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 3 / 20



Formal Definition

Definition (Parse Trees)

Let G = (V, T, S, P ) be a grammar. The parse trees for G are trees with
the following conditions:

1 The root is S, the start variable.

2 Each interior node is labeled by a variable in V .

3 Each leaf is labeled by either a variable, a terminal, or ε. However, if
the leaf is labeled ε, it must be the only child of its parent.

4 If an interior node is labeled A, and its children are labeled

X1, X2, . . . , Xk

respectively, from the left, then A→ X1, X2, . . . , Xk is a
production in P .

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 4 / 20



Example 1: Expressions

G = ({E, I}, {+, ∗, (, ), a, b, 0, 1}, E, P )

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

A parse tree:

E

E

I

+ E

I

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 5 / 20



Example 2: Palindromes

G = ({P}, {0, 1}, P,A)

P → ε | 0 | 1 | 0P0 | 1P1

A parse tree:

P

0 P

1 P

ε

1

0

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 6 / 20



Yields

Definition (Yields)

The string obtained by concatenating the leaves of a parse tree from the
left is called the yield of the tree.

E

E

I

+ E

P

0 P

1 P

ε

1

0

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 7 / 20



Relationship between Parse Trees and Derivations

Theorem

Let G = (V, T, S, P ) be a context-free grammar. Then, the following are
equivalent:

1 S ⇒∗ w.

2 S ⇒∗
lm w.

3 S ⇒∗
rm w.

4 There is a parse tree whose yield is w.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 8 / 20



Ambiguous and Unambiguous Grammars

Definition

A context-free grammar is ambiguous if there exists some w ∈ L(G) that
has at least two distinct parse trees. If each string has at most one parse
tree, the grammar is unambiguous.

Theorem

For each grammar G = (V, T, S, P ) and string w ∈ T ∗, w has two
distinct parse trees if and only if w has two distinct leftmost derivations
from S.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 9 / 20



Example

The grammar of expressions:

G = ({E, I}, {+, ∗, (, ), a, b, 0, 1}, E, P )

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1
Two distinct parse trees for a+ a ∗ a:

E

E

I

a

+ E

E

I

a

∗ E

I

a

E

E

E

I

a

+ E

I

a

∗ E

I

a

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 10 / 20



Example

The grammar of expressions:

G = ({E, I}, {+, ∗, (, ), a, b, 0, 1}, E, P )

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

Two distinct leftmost derivations for a+ a ∗ a:

E ⇒ E +E ⇒ I +E ⇒ a+E ⇒ a+E ∗E ⇒ a+ I ∗E ⇒
a+ a ∗ E ⇒ a+ a ∗ I ⇒ a+ a ∗ a
E ⇒ E ∗ E ⇒ E + E ∗ E ⇒ I + E ∗ E ⇒ a+ E ∗ E ⇒
a+ I ∗ E ⇒ a+ a ∗ E ⇒ a+ a ∗ I ⇒ a+ a ∗ a

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 11 / 20



General Facts

We would like to transform ambiguous grammars into unambiguous ones.
However,

There is no algorithm to remove ambiguity from a CFG.

There is no algorithm that can even tell us whether a CFG is
ambiguous or not.

There are context-free languages that are inherently ambiguous; for
these languages, removing the ambiguity is impossible.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 12 / 20



Finding an unambiguous grammar is possible in practice

Fortunately, for the sorts of constructs that appear in common
programming languages, there are well-known techniques to eliminate
ambiguity.

An ambiguous grammar:

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

An equivalent but unambiguous grammar:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)

T → F | T ∗ F
E → T | E + T

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 13 / 20



Finding an unambiguous grammar is possible in practice

Fortunately, for the sorts of constructs that appear in common
programming languages, there are well-known techniques to eliminate
ambiguity.

An ambiguous grammar:

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

An equivalent but unambiguous grammar:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)

T → F | T ∗ F
E → T | E + T

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 13 / 20



Example

The only parse tree for a+ a ∗ a:

E

E

T

F

I

a

+ T

T

F

I

a

∗ F

I

a

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 14 / 20



Eliminating Ambiguity

Let us first analyze why the following grammar is ambiguous.

E → I | E + E | E ∗ E | (E)

I → a | b | Ia | Ib | I0 | I1

The grammar does not respect the precedence of operators.
I Conventionally, we give higher precedence to ∗ over +, e.g., 1 + 2 ∗ 3.
I We need to enforce the common precedence rule in the grammar.

The grammar does not respect the associativity of operators.
I We assume that operators associate to the left, e.g., 1 + 2 + 3 should

be parsed as (1 + 2) + 3.
I We need to enforce the common associativity rule in the grammar.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 15 / 20



Eliminating Ambiguity

To enforce precedence, classify expressions into factors, terms, and
expressions:

A factor is either an identifier or a parenthesized expressions, e.g.,

a, b, (a+ b), (a ∗ b), . . .
In grammar:

F → I | (E)

A term is either a produce of one or more factors, e.g.,

a, b, (a+ b), (a ∗ b), a ∗ b, a ∗ (a+ b), a ∗ (a ∗ b), . . .
In grammar

T → F | T ∗ F
An expression is a sum of one or more terms, e.g.,

a ∗ b, a ∗ (a+ b), a ∗ b+ a ∗ (a+ b), . . .

In grammar
E → T | E + T

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 16 / 20



Eliminating Ambiguity

The unambiguous grammar:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)

T → F | T ∗ F
E → T | E + T

Questions:

How does it enforce left associativity?

How can we modify the grammar to enforce right associativity?

Is the above grammar really unambiguous?

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 17 / 20



Inherent Ambiguity

In the previous example, ambiguity is involved in the grammar.

For some languages, ambiguity is inherent as it is involved in the
language itself. In this case, all of the grammars for the language are
ambiguous.

Definition

A language L is inherently ambiguous if every grammar that generates L
is ambiguous.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 18 / 20



Example

Consider the language:
L = L1 ∪ L2

where

L1 = {anbncm | n,m ≥ 0}, L2 = {anbmcm | n,m ≥ 0}

A context-free grammar:

S → S1 | S2

S1 → S1c | A
A → aAb | ε
S2 → aS2 | B
B → bBc | ε

Why is the grammar ambiguous?

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 19 / 20



Summary

Context-free grammars: A way of describing languages by recursive
rules called productions.

Derivations: Beginning with the start symbol, we can derive terminal
strings by repeatedly applying production rules.

Context-free languages: The language of a CFG is the set of terminal
strings that can be derived. Such a language is called context-free.

Parse trees: A tree representation for a derivation.

Ambiguous grammars: Grammars that have two different parse trees
for a terminal string.

Eliminating ambiguity: For many useful grammars, it is possible to
find unambiguous grammars. However, the unambiguous grammar is
typically more complex than the original.

Inherent ambiguity: There are some context-free languages that do
not have unambiguous grammars.

Hakjoo Oh COSE215 2019 Spring, Lecture 10 April 29, 2019 20 / 20


