
COSE215: Theory of Computation

Lecture 1 — Mathematical Preliminaries

Hakjoo Oh
2019 Spring

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 1 / 16

Contents

Logical notations

Basic set theory

Language

Inductive proofs

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 2 / 16

Notations in Logic

A, B: arbitrary statements.

P (x): a statement that involves variable x.

A ∧B: the conjunction of A and B

A ∨B: the disjunction of A and B

A =⇒ B: if A then B

A ⇐⇒ B: A if and only if (iff) B, i.e., A =⇒ B ∧B =⇒ A

∀x.P (x): for all x, P (x)

∀x ∈ X.P (x): ∀x.x ∈ X =⇒ P (x)

∃x.P (x): there exists x such that P (x)

∃x ∈ X.P (x): ∃x.x ∈ X ∧ P (x)

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 3 / 16

Sets

A set is a collection of elements, e.g.,
I N = {0, 1, 2, . . .}
I {x | P (x)}: a set determined by a property P
I {x ∈ X | P (x)}: {x | x ∈ X ∧ P (x)}
I S = {0, 1, 2} = {x ∈ N | 0 ≤ x ≤ 2}
I S = {2, 4, 6, . . .} = {x ∈ N | x is even}

Notations:
I ∅: the empty set
I S1 ⊆ S2 iff ∀x ∈ S1. x ∈ S2
I S1 ⊂ S2 if S1 ⊆ S2 and S1 6= S2

F e.g., {1, 2} ⊂ {1, 2, 3}, {1, 2} 6⊂ {1, 2}
I |S|: the number of elements in set S
I S1 and S2 are disjoint iff S1 ∩ S2 = ∅.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 4 / 16

Construction of Sets

Union, intersection, and difference:

S1 ∪ S2 = {x | x ∈ S1 ∨ x ∈ S2}
S1 ∩ S2 = {x | x ∈ S1 ∧ x ∈ S2}
S1 − S2 = {x | x ∈ S1 ∧ x 6∈ S2}

Let X be a set of sets (X = {A1, A2, . . . , An}).⋃
X = A1 ∪A2 ∪ · · · ∪An = {a | ∃A ∈ X.a ∈ A}⋂
X = A1 ∩A2 ∩ · · · ∩An = {a | ∀A ∈ X.a ∈ A}

Let A1, A2, . . . , An be sets.⋃
1≤i≤n

Ai = A1 ∪ · · · ∪An,
⋂

1≤i≤n

Ai = A1 ∩ · · · ∩An

S = {x | x ∈ U ∧ x 6∈ S} (U : universe)
Powerset: 2S = P(S) = {x | x ⊆ S}
Cartesian product: S1 × S2 = {(x, y) | x ∈ S1 ∧ y ∈ S2}. In
general, S1 × S2 × · · · × Sn = {(x1, x2, . . . , xn) | xi ∈ Si}

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 5 / 16

Partition

When S1, S2, . . . , Sn are subsets of a given set S, S1, S2, . . . , Sn forms
a partition of S iff:

1 S1, S2, . . . , Sn are mutually disjoint:

∀i, j. i 6= j =⇒ Si ∩ Sj = ∅

2 S1, S2, . . . , Sn cover S: ⋃
1≤i≤n

Si = S

3 none of Si is empty: ∀i.Si 6= ∅.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 6 / 16

Alphabet

A finite, non-empty set of symbols, e.g.,

1 Σ = {0, 1}: the binary alphabet.

2 Σ = {a, b, . . . , z}: the set of all lowercase letters.

3 The set of all ASCII characters.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 7 / 16

String

A finite sequence of symbols chosen from an alphabet, e.g.,

1 Σ = {0, 1}: 0, 1, 00, 01, . . .

2 Σ = {a, b, c}: a, b, c, ab, bc, . . .

Notations:

ε: the empty string

wv: the concatenation of w and v

wR: the reverse of w

|w|: the length of string w

w = vu: v is a prefix and u a suffix of w.

Σk: the set of strings (over Σ) of length k

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · =
⋃

k≥0 Σk

Σ+ = Σ+ = Σ1 ∪ Σ2 ∪ · · · =
⋃

k≥1 Σk

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 8 / 16

Language

A language L is a set of strings, i.e., L ⊆ Σ∗ (L ∈ 2Σ∗
)

When Σ = {0, 1},
L1 = {0, 00, 001}
L2 = {0n1n | n ≥ 0}
L3 = {ε, 01, 10, 0011, 0101, 1001, . . .}
L3 = {10, 11, 101, 111, 1011, . . .}

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 9 / 16

Language Operations

union, intersection, difference: L1 ∪ L2, L1 ∩ L2, L1 − L2

reverse: LR = {wR | w ∈ L}
complement:L = Σ∗ − L
concatenation of L1 and L2:

L1L2 = {xy | x ∈ L1 ∧ y ∈ L2}

power:

L0 = {ε}
Ln = Ln−1L

closures:
L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =

⋃
i≥0

Li

L+ = L1 ∪ L2 ∪ L3 ∪ · · · =
⋃
i≥1

Li

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 10 / 16

Exercises

1 Consider L = {anbn | n ≥ 0}.
1 L2 =
2 LR =

2 Prove that (uv)R = vRuR for all u, v ∈ Σ+.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 11 / 16

Inductive proofs

In CS, set is usually defined inductively.

Example (Inductive Definition of Trees)

A set of trees is defined as follows:

1 (Basis) A single node (called root) is a tree.

2 (Induction) If T1, T2, . . . , Tk are trees, then the following is also a tree:

1 Begin with a new node N , which is the root of the tree.
2 Add edges from N to the roots of each of the trees T1, T2, . . . , Tk.

Example (Inductive Definition of Arithmetic Expressions)

A set of arithmetic expressions is defined as follows:

(Basis) Any number or letter (i.e., a variable) is an expression.

(Induction) If E and F are expressions, then so are E+F , E ∗F , and (E).

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 12 / 16

Inductive Proofs

Induction is used to prove properties about inductively defined sets. Let S
be an inductively-defined set. Let P (x) be a property of x. To show that,
for all x ∈ S.P (x), it suffices to show that:

1 (Base case): Show P (x) for all basis elements x ∈ S.

2 (Inductive case): For each inductive rule using elements x1, . . . , xk

of S to construct an element x, show that

if P (x1), . . . , P (xk) then P (x)

P (x1), . . . , P (xk): induction hypotheses.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 13 / 16

Inductive Proofs: Example
Prove that every tree has one more node than it has edges.

Proof.
Formally, what we prove is P (T) =“if T is a tree, and T has n nodes and e edges, then
n = e + 1”.

1 Base case: The base case is when T is a single node. Then, n = 1 and e = 0, so the
relationship n = e + 1 holds.

2 Inductive case: The inductive case is when T is built with root node N and k smaller

trees T1, T2, . . . , Tk.

1 Induction hypothesis: The statements P (Ti) holds for i = 1, 2, . . . , k. That is Ti

have ni nodes and ei edges; then ni = ei + 1.
2 To Show: P (T) holds: if T has n nodes and e edges, then n = e + 1. The nodes

of T are node N and all the nodes of the Ti’s, i.e., n = 1 + n1 + · · · + nk The
edges of T are the k edges we added explicitly in the inductive definition step, plus
the edges of the Ti’s. Hence, T has e = k + e1 + · · · + ek edges.

n = 1 + n1 + · · · + nk def. of n

= 1 + (e1 + 1) + · · · + (ek + 1) induction hypothesis

= 1 + k + e1 + · · · + ek

= 1 + e def. of e

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 14 / 16

Inductive Proofs: Example
Prove that every expression has an equal number of left and right
parentheses.

Proof.
Formally, the formal statement P (G) we need to prove is: “if G has l left parentheses and r
right parentheses, then l = r.”

1 Base case: The base case is when G is a number or a variable, in which cases l = r = 0.

2 Inductive case: There are three cases, where G is constructed recursively from smaller

expressions:

I G = E + F :
1 Induction hypothesis: The statement holds for all smaller expressions: for E,

lE = rE , and for F , lF = rF .
2 To Show: P (G) holds: lG = rG:

lG = lE + lF

= rE + rF I.H.

= rG

I G = E ∗ F : similar
I G = (E): similar

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 15 / 16

Summary

Sets: definition, notations, constructions

Alphabet, String, Language

Inductive definitions and proofs.

Hakjoo Oh COSE215 2019 Spring, Lecture 1 March 5, 2019 16 / 16

