COSE215: Theory of Computation Lecture 1 — Mathematical Preliminaries

Hakjoo Oh 2019 Spring

Contents

- Logical notations
- Basic set theory
- Language
- Inductive proofs

Notations in Logic

- A, B: arbitrary statements.
- P(x): a statement that involves variable x.
- $A \wedge B$: the conjunction of A and B
- $A \lor B$: the disjunction of A and B
- $A \implies B$: if A then B
- $A \iff B$: A if and only if (iff) B, i.e., $A \implies B \land B \implies A$
- orall x.P(x): for all x, P(x)
- $\forall x \in X.P(x): \forall x.x \in X \implies P(x)$
- $\exists x. P(x)$: there exists x such that P(x)
- $\exists x \in X.P(x)$: $\exists x.x \in X \land P(x)$

Sets

• A set is a collection of elements, e.g.,

$$\blacktriangleright \mathbb{N} = \{0, 1, 2, \ldots\}$$

$$\blacktriangleright \ \{x \in X \mid P(x)\}: \{x \mid x \in X \land P(x)\}$$

•
$$S = \{0, 1, 2\} = \{x \in \mathbb{N} \mid 0 \le x \le 2\}$$

•
$$S=\{2,4,6,\ldots\}=\{x\in\mathbb{N}\mid x ext{ is even}\}$$

Notations:

▶ Ø: the empty set

•
$$S_1 \subseteq S_2$$
 iff $orall x \in S_1$. $x \in S_2$

$$\blacktriangleright S_1 \subset S_2 \text{ if } S_1 \subseteq S_2 \text{ and } S_1 \neq S_2$$

★ e.g.,
$$\{1,2\} \subset \{1,2,3\}$$
, $\{1,2\} \not\subset \{1,2\}$

- |S|: the number of elements in set S
- S_1 and S_2 are disjoint iff $S_1 \cap S_2 = \emptyset$.

Construction of Sets

• Union, intersection, and difference:

$$egin{array}{rcl} S_1 \cup S_2 &=& \{x \mid x \in S_1 \lor x \in S_2\} \ S_1 \cap S_2 &=& \{x \mid x \in S_1 \land x \in S_2\} \ S_1 - S_2 &=& \{x \mid x \in S_1 \land x
otin S_2\} \end{array}$$

• Let X be a set of sets $(X = \{A_1, A_2, \ldots, A_n\})$.

$$\begin{array}{lll} \bigcup X &=& A_1 \cup A_2 \cup \cdots \cup A_n = \{a \mid \exists A \in X.a \in A\} \\ \bigcap X &=& A_1 \cap A_2 \cap \cdots \cap A_n = \{a \mid \forall A \in X.a \in A\} \end{array}$$

• Let A_1, A_2, \ldots, A_n be sets.

$$igcup_{1\leq i\leq n}A_i=A_1\cup\cdots\cup A_n, \quad igcup_{1\leq i\leq n}A_i=A_1\cap\cdots\cap A_n$$

•
$$\overline{S} = \{x \mid x \in U \land x \not\in S\}$$
 (U: universe)

- Powerset: $2^S = \mathcal{P}(S) = \{x \mid x \subseteq S\}$
- Cartesian product: $S_1 \times S_2 = \{(x, y) \mid x \in S_1 \land y \in S_2\}$. In general, $S_1 \times S_2 \times \cdots \times S_n = \{(x_1, x_2, \dots, x_n) \mid x_i \in S_i\}$

Partition

When S_1, S_2, \ldots, S_n are subsets of a given set S, S_1, S_2, \ldots, S_n forms a partition of S iff:

 $\textcircled{O} \hspace{0.1in} S_1, S_2, \ldots, S_n \hspace{0.1in} \text{are mutually disjoint:}$

$$orall i, j. \ i
eq j \implies S_i \cap S_j = \emptyset$$

2 S_1, S_2, \ldots, S_n cover S:

$$igcup_{1\leq i\leq n}S_i=S$$

③ none of S_i is empty: $\forall i.S_i \neq \emptyset$.

Alphabet

A finite, non-empty set of symbols, e.g.,

- $\Sigma = \{0, 1\}$: the binary alphabet.
- 2 $\Sigma = \{a, b, \dots, z\}$: the set of all lowercase letters.
- The set of all ASCII characters.

String

A finite sequence of symbols chosen from an alphabet, e.g.,

0
$$\Sigma = \{0, 1\}$$
: 0, 1, 00, 01, ...

2
$$\Sigma = \{a, b, c\}$$
: a, b, c, ab, bc, \ldots

Notations:

- *ϵ*: the empty string
- ullet wv: the concatenation of w and v
- w^R : the reverse of w
- |w|: the length of string w
- w = vu: v is a prefix and u a suffix of w.
- Σ^k : the set of strings (over Σ) of length k
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k \geq 0} \Sigma^k$
- $\Sigma^+ = \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \bigcup_{k \ge 1} \Sigma^k$

Language

A language L is a set of strings, i.e., $L \subseteq \Sigma^*$ $(L \in 2^{\Sigma^*})$

When $\Sigma = \{0,1\}$,

- $L_1 = \{0, 00, 001\}$
- $L_2 = \{0^n 1^n \mid n \ge 0\}$
- $L_3 = \{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$
- $L_3 = \{10, 11, 101, 111, 1011, \ldots\}$

Language Operations

- union, intersection, difference: $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 L_2$
- ullet reverse: $L^R=\{w^R\mid w\in L\}$
- complement: $\overline{L} = \Sigma^* L$
- concatenation of L_1 and L_2 :

$$L_1L_2=\{xy\mid x\in L_1\wedge y\in L_2\}$$

opwer:

$$L^0 = \{\epsilon\}$$
$$L^n = L^{n-1}L$$

closures:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i \ge 0} L^i$$

 $L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{i \ge 1} L^i$

Exercises

• Consider
$$L = \{a^n b^n \mid n \ge 0\}.$$

• $L^2 =$
• $L^R =$

2 Prove that $(uv)^R = v^R u^R$ for all $u, v \in \Sigma^+$.

Inductive proofs

In CS, set is usually defined inductively.

Example (Inductive Definition of Trees)

A set of trees is defined as follows:

- (Basis) A single node (called root) is a tree.
- ② (Induction) If T_1, T_2, \ldots, T_k are trees, then the following is also a tree:
 - Begin with a new node N, which is the root of the tree.
 - **2** Add edges from N to the roots of each of the trees T_1, T_2, \ldots, T_k .

Example (Inductive Definition of Arithmetic Expressions)

A set of arithmetic expressions is defined as follows:

- (Basis) Any number or letter (i.e., a variable) is an expression.
- (Induction) If E and F are expressions, then so are E + F, E * F, and (E).

Inductive Proofs

Induction is used to prove properties about inductively defined sets. Let S be an inductively-defined set. Let P(x) be a property of x. To show that, for all $x \in S.P(x)$, it suffices to show that:

- (Base case): Show P(x) for all basis elements $x \in S$.
- 2 (Inductive case): For each inductive rule using elements x_1, \ldots, x_k of S to construct an element x, show that

if $P(x_1), \ldots, P(x_k)$ then P(x)

 $P(x_1), \ldots, P(x_k)$: induction hypotheses.

Inductive Proofs: Example

Prove that every tree has one more node than it has edges.

Proof.

Formally, what we prove is P(T) = "if T is a tree, and T has n nodes and e edges, then n = e + 1".

- Base case: The base case is when T is a single node. Then, n = 1 and e = 0, so the relationship n = e + 1 holds.
- Inductive case: The inductive case is when T is built with root node N and k smaller trees T₁, T₂, ..., T_k.
 - **0** Induction hypothesis: The statements $P(T_i)$ holds for i = 1, 2, ..., k. That is T_i have n_i nodes and e_i edges; then $n_i = e_i + 1$.
 - **2** To Show: P(T) holds: if T has n nodes and e edges, then n = e + 1. The nodes of T are node N and all the nodes of the T_i 's, i.e., $n = 1 + n_1 + \cdots + n_k$ The edges of T are the k edges we added explicitly in the inductive definition step, plus the edges of the T_i 's. Hence, T has $e = k + e_1 + \cdots + e_k$ edges.

$$n = 1 + n_1 + \dots + n_k$$
def. of n
= 1 + (e_1 + 1) + \dots + (e_k + 1) induction hypothesis
= 1 + k + e_1 + \dots + e_k
= 1 + e def. of e

Inductive Proofs: Example

Prove that every expression has an equal number of left and right parentheses.

Proof.

Formally, the formal statement P(G) we need to prove is: "if G has l left parentheses and r right parentheses, then l = r."

- **()** Base case: The base case is when G is a number or a variable, in which cases l = r = 0.
- Inductive case: There are three cases, where G is constructed recursively from smaller expressions:

$$G = E + F$$
:

- $\textbf{0} \quad \textbf{Induction hypothesis: The statement holds for all smaller expressions: for E, $l_E = r_E$, and for F, $l_F = r_F$. }$
- **2** To Show: P(G) holds: $l_G = r_G$:

$$l_G = l_E + l_F$$

= $r_E + r_F$ I.H.
= r_G

G = E * F: similar
 G = (E): similar

Summary

- Sets: definition, notations, constructions
- Alphabet, String, Language
- Inductive definitions and proofs.