Homework 3
 COSE215, Spring 2019

Hakjoo Oh
Due: 5/22 (Wed) (in class)

Problem 1 (30pts) Design context-free grammars for the following languages:

1. The language described by regular expression $0^{*} 1(0+1)^{*}$
2. $L=\left\{a^{n} b^{m} \mid n \neq m-1\right\}$ (n and m are non-negative integers)
3. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w) \neq n_{b}(w)\right\}$

Problem 2 (15pts) Consider the grammar

$$
S \rightarrow a S|a S b S| \epsilon
$$

This grammar is ambiguous. Show that the string aab has two:

1. Parse trees.
2. Leftmost derivations.
3. Rightmost derivations.

Problem 3 (10pts) Design a PDA that accepts the following language:

$$
L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}
$$

Problem 4 (10pts) Design a deterministic PDA that accepts the following language:

$$
L=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}
$$

Problem 5 (15pts) Design a deterministic PDA that accepts the language:

$$
L=\left\{0^{n} 1^{m} \mid n \leq m\right\}
$$

Problem 6 (20pts) Consider the following grammar:

$$
\begin{aligned}
& S \rightarrow A S B \mid \epsilon \\
& A \rightarrow a A S \mid a \\
& B \rightarrow S b S|A| b b
\end{aligned}
$$

1. Eliminate ϵ-productions.
2. Eliminate any unit productions in the resulting grammar.
3. Eliminate any useless symbols in the resulting grammar.
4. Put the resulting grammar into Chomsky Normal Form.
