Homework 2
 COSE215, Spring 2019

Hakjoo Oh

Due: $4 / 17$ (in class)

Problem 1 (25pts, 5pts each) Find regular expressions for the following languages.

1. $L=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ contains at least one a and at least one $\left.b\right\}$
2. $L=\left\{a^{n} b^{m} \mid n \geq 1, m \geq 1, n m \geq 3\right\}$
3. $L=\left\{w \in\{a, b, c\}^{*} \mid w\right.$ has no more than three a 's $\}$
4. $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ begins and ends with 0 and contains at least one 1$\}$
5. $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ does not contain 111$\}$

Problem 2 (20pts) Consider a DFA represented by a transition table:

	0	1
$\rightarrow q_{1}$	q_{2}	q_{1}
q_{2}	q_{3}	q_{1}
$* q_{3}$	q_{3}	q_{2}

Give all the regular expressions $R_{i j}^{(0)}, R_{i j}^{(1)}, R_{i j}^{(2)}$. Try to simplfy the expressions as much as possible. Think of state q_{i} as if it were the state with number i.

Problem 3 (10pts) Convert the following regular expressions to finite automata (ϵ-NFA):

1. $a b^{*} a a+b b a^{*} a b$
2. $(a+b)^{*} b(a+b b)^{*}$

Problem 4 (10pts) Find an ϵ-NFA that accepts language $L\left(a b^{*} a^{*}\right) \cap L\left(a^{*} b^{*} a\right)$.
Problem 5 (15pts) Suppose h is a homomorphism. Are the following statements true? If so, prove it, otherwise give a counter-example.

1. $h\left(L_{1} \cup L_{2}\right)=h\left(L_{1}\right) \cup h\left(L_{2}\right)$
2. $h\left(L_{1} \cap L_{2}\right)=h\left(L_{1}\right) \cap h\left(L_{2}\right)$
3. $h\left(L_{1} L_{2}\right)=h\left(L_{1}\right) h\left(L_{2}\right)$

Problem 6 (30pts) Use the pumping lemma to prove that the following languages are not regular.

1. $L=\left\{0^{i} \mid i\right.$ is a prime $\}$:
2. $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$
3. $L=\left\{w \in\{a, b\}^{*} \mid n_{a}(w)=n_{b}(w)\right\}\left(n_{a}(w)\right.$ and $n_{b}(w)$ denote the number of a 's and b 's in w, respectively)
