Homework 2 COSE215, Spring 2019

Hakjoo Oh

Due: 4/17 (in class)

Problem 1 (25pts, 5pts each) Find regular expressions for the following languages.

- 1. $L = \{w \in \{a, b, c\}^* \mid w \text{ contains at least one } a \text{ and at least one } b\}$
- 2. $L = \{a^n b^m \mid n \ge 1, m \ge 1, nm \ge 3\}$
- 3. $L = \{w \in \{a, b, c\}^* \mid w \text{ has no more than three } a$'s}
- 4. $L = \{w \in \{0,1\}^* \mid w \text{ begins and ends with } 0 \text{ and contains at least one } 1\}$
- 5. $L = \{w \in \{0, 1\}^* \mid w \text{ does not contain } 111\}$

Problem 2 (20pts) Consider a DFA represented by a transition table:

$$\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_1 & q_2 & q_1 \\ q_2 & q_3 & q_1 \\ *q_3 & q_3 & q_2 \\ \end{array}$$

Give all the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$, $R_{ij}^{(2)}$. Try to simplfy the expressions as much as possible. Think of state q_i as if it were the state with number i.

Problem 3 (10pts) Convert the following regular expressions to finite automata (ϵ -NFA):

- 1. $ab^*aa + bba^*ab$
- 2. $(a+b)^*b(a+bb)^*$

Problem 4 (10pts) Find an ϵ -NFA that accepts language $L(ab^*a^*) \cap L(a^*b^*a)$.

Problem 5 (15pts) Suppose h is a homomorphism. Are the following statements true? If so, prove it, otherwise give a counter-example.

- 1. $h(L_1 \cup L_2) = h(L_1) \cup h(L_2)$
- 2. $h(L_1 \cap L_2) = h(L_1) \cap h(L_2)$
- 3. $h(L_1L_2) = h(L_1)h(L_2)$

Problem 6 (30pts) Use the pumping lemma to prove that the following languages are not regular.

- 1. $L = \{0^i \mid i \text{ is a prime}\}:$
- 2. $L = \{ww \mid w \in \{0, 1\}^*\}$
- 3. $L = \{w \in \{a,b\}^* \mid n_a(w) = n_b(w)\}\ (n_a(w) \text{ and } n_b(w) \text{ denote the number of } a$'s and b's in w, respectively)