Homework 1
 COSE215, Spring 2019

Hakjoo Oh

Due: $4 / 3$ (in class)

Problem 1 (10pts) Prove that $(u v)^{R}=v^{R} u^{R}$ for all $u, v \in \Sigma^{+}$. (Hint: Use induction on the length of v.)

Problem 2 (10pts) Consider the language: $L=\left\{w 00 \mid w \in\{0,1\}^{*}\right\}$.

1. (5pts) Design a DFA that accepts L.
2. (5pts) Design an NFA that accepts L.

Problem 3 (10pts) Consider the following language: $L=\left\{a^{m} b^{n} \mid m, n \geq 1\right\}$.

1. (5pts) Design a DFA that accepts L.
2. (5pts) Design an NFA that accepts L.

Problem 4 (10pts) Consider the following language: $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ ends with 1001. $\}$.

1. (5pts) Design a DFA that accepts L.
2. (5pts) Design an NFA that accepts L.

Problem 5 (10pts) Design an NFA to recognize the strings that represent real numbers. Assume $\Sigma=\{0,1,2,3,4,5,6,7,8,9,$.$\} . For example, the NFA should accept strings such as " 1.0$ ", " 12.156 ", and ". 01 ", but must reject strings such as "0.5.1", "12.", and " 3 ".

Problem 6 (20pts) Use subset construction to convert the following NFA to a DFA:

Problem 7 (10pts) Design an ϵ-NFA that accepts the following language:

$$
L=\left\{a^{m} b^{n} c^{o} \mid m, n, o \geq 0\right\}
$$

Problem 8 (20pts) Consider the following transition table of an ϵ-NFA:

	ϵ	a	b	c
p	\emptyset	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	\emptyset
r	$\{q\}$	$\{r\}$	\emptyset	$\{p\}$

where p is the initial state and r is the final state.

1. (10pts) Compute the ϵ-closure(EClOSE) of each state.
2. (10pts) Convert the automaton to a DFA.
