Mid-term Exam
 COSE215, Spring 2017

Instructor: Hakjoo Oh

Problem 1. (10pts) Design a DFA that accepts the following language:

1. (5pts) $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ has at most two 1 s$\}$.
2. (5pts) $L=\left\{w_{1} 01 w_{2} \mid w_{1}, w_{2} \in\{0,1\}^{*}\right\}$.

Problem 2. (15pts) We can transform an NFA

$$
N=\left(Q_{N}, \Sigma, \delta_{N}, q_{0}, F_{N}\right)
$$

to an equivalent DFA D as follows:

$$
D=\left(Q_{D}, \Sigma, \delta_{D},\left\{q_{0}\right\}, F_{D}\right)
$$

where

- $Q_{D}=2^{Q_{N}}$
- $F_{D}=\left\{S \in Q_{D} \mid S \cap F_{N} \neq \emptyset\right\}$.
- For each $S \in Q_{D}$ and input symbol $a \in \Sigma$:

$$
\delta_{D}(S, a)=\bigcup_{p \in S} \delta_{N}(p, a)
$$

Then, we can prove $L(N)=L(D)$ by showing that

$$
\forall w \cdot \delta_{D}^{*}\left(\left\{q_{0}\right\}, w\right)=\delta_{N}^{*}\left(q_{0}, w\right)
$$

Prove the claim by induction on the length of w.
Problem 3. (15pts) Recall that an ϵ-NFA is a five-tuple:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where Q is a finite set of states, Σ is a finite set of input symbols, $\delta: Q \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{Q}$ is a transition function, $q_{0} \in Q$ is the initial state, and $F \subseteq Q$ is a set of final states.

1. (5pts) Define EClose : $2^{Q} \rightarrow 2^{Q}$, which takes a set of states and returns the states reachable via ϵ-transitions.
2. (5pts) Define the extended transition function $\delta^{*}: Q \times$ $\Sigma^{*} \rightarrow 2^{Q}$.
3. (5pts) Define the language of NFA:

$$
L(M)=\left\{w \in \Sigma^{*} \mid\right.
$$

Problem 4. (10pts) Write regular expressions for the following languages:

1. $(5 \mathrm{pts})\left\{a^{n} b^{m} \mid(n+m)\right.$ is even $\}$
2. (5pts) $\left\{w \in \Sigma^{*} \mid\right.$ every 0 in w is followed by at least one 1$\}$

Problem 5. (10pts) Let D be a DFA. Let $R_{i j}^{(k)}$ be the regular expression whose language is the set of strings w such that w is the label of a path from state i to state j in D, and that path has no intermediate node whose number is greater than k. Define $R_{i j}^{(k)}$ when $k>0$.
Problem 6. (10pts) Prove that $L=\left\{0^{i} \mid i\right.$ is a prime $\}$ is non-regular.
Problem 7. (10pts) Consider the language:

$$
L=\left\{w 0^{n} \mid w \in\{a, b\} \text { and } n_{a}(w)=n\right\}
$$

where $n_{a}(w)$ is the number of a in w. Find a context-free grammar of the language.
Problem 8. (20pts) True/false questions. (Leave a blank when you are uncertain: a correct answer gets you 2 points but you lose 2 points for each wrong answer.)

1. $\emptyset^{*}=\emptyset$.
2. $\left(L^{*}\right)^{*}=L^{*}$ for any language L.
3. Every finite language is regular.
4. Every infinite language is context-free.
5. There is some language that can be specified by a context-free grammar but not by a regular expression.
6. There is a language that satisfies the pumping lemma conditions but is not regular.
7. The C programming language is regular.
8. Suppose D_{1} and D_{2} are any DFAs. We can always construct a DFA D such that $L(D)=L\left(D_{1}\right) \cap\left(\Sigma^{*}-L\left(D_{2}\right)\right)$.
9. Some context-free languages are recognizable by finite automata.
10. Recall that regular expressions are constructed by the grammar:

$$
e \rightarrow a \in \Sigma|\epsilon| \emptyset\left|e_{1}+e_{2}\right| e_{1} \cdot e_{2} \mid e^{*}
$$

The set of all regular expressions is expressible by a regular expression.

