Mid-term Exam
 COSE215, Spring 2016

Instructor: Hakjoo Oh

Problem 1. (20pts) Write regular expressions for the following languages. $(\Sigma=\{0,1\})$

1. (4pts) The language of the DFA:

2. (4pts) The language of the DFA:

3. (4pts) $\left\{0^{n} 1^{m} \mid n \geq 2, m\right.$ is odd $\}$
4. (4pts) $\left\{w \in \Sigma^{*} \mid w\right.$ has an even number of 0 's $\}$
5. (4pts) $\left\{w \in \Sigma^{*} \mid\right.$ every 0 in w is followed by at least one 1$\}$

Problem 2. (10pts) Recall that an NFA is a tuple of five components:

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right)
$$

where Q is a finite set of states, Σ is a finite set of input symbols, $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is a transition function, $q_{0} \in Q$ is the initial state, and $F \subseteq Q$ is a set of final states.

1. (5pts) Define the extended transition function $\delta^{*}: Q \times$ $\Sigma^{*} \rightarrow 2^{Q}$.
2. (5pts) Define the language of NFA:

$$
L(M)=\left\{w \in \Sigma^{*} \mid\right.
$$

Problem 3. (10pts) Consider the following transition table of an ϵ-NFA:

	ϵ	a	b	c
$\rightarrow p$	\emptyset	$\{p\}$	$\{q\}$	$\{r\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	\emptyset
$* r$	$\{q\}$	$\{r\}$	\emptyset	$\{p\}$

where \rightarrow indicates the initial state and $*$ the final state.

1. (5pts) Compute the ϵ-closure(ECLOSE) of each state.

$$
\begin{aligned}
\operatorname{EClose}(p) & = \\
\operatorname{EClose}(q) & = \\
\operatorname{EClosE}(r) & =
\end{aligned}
$$

2. (5pts) Convert the automaton to a DFA. Express the DFA by a transition table.

Problem 4. (10pts) Consider the language

$$
L=\left\{0^{i} 1^{j} \mid i>j\right\}
$$

Is L a regular language? If so, design a finite automaton or a regular expression for the language. Otherwise, prove that L is non-regular using the following pumping lemma.
For any regular language L there exists an integer n, such that for all $x \in L$ with $|x| \geq n$, there exist $u, v, w \in \Sigma^{*}$, such that

1. $x=u v w$
2. $|u v| \leq n$
3. $|v| \geq 1$
4. for all $i \geq 0, u v^{i} w \in L$.

Problem 5. (10pts) Consider the context-free grammar:

$$
S \rightarrow a S|a S b S| \epsilon
$$

Show that the grammar is ambiguous.

Problem 6. (10pts) Consider the context-free grammar:

$$
E \rightarrow+E E|* E E|-E E|x| y
$$

and consider the string $+*-x y x y$.

1. (5pts) Find the leftmost derivation of the string.
2. (5 pts) Find the rightmost derivation of the string.

Problem 7. (30pts) True/false questions. (Leave a blank when you are uncertain: a correct answer gets you 2 points but you lose 2 points for each wrong answer.)

1. There is a language whose closure is not infinite.
2. Every regular language can be defined by a context-free grammar.
3. If a language is infinite, then it is non-regular.
4. Every DFA can be transformed into an equivalent NFA.
5. There is some language that can be specified by a regular expression but not by a finite automaton.
6. There is a language that satisfies the pumping lemma but is not regular.
7. We can design a finite automaton whose language equals to the C language.
8. Suppose D_{1} and D_{2} are any DFAs. We can always construct a DFA D such that $L(D)=L\left(D_{1}\right) \cap L\left(D_{2}\right)$.
9. Some context-free languages are recognizable by finite automata.
10. Let L be any language whose alphabet is $\{0\}$ (L is not necessarily regular). Then, L^{*} is always regular.
11. Recall that regular expressions are constructed by the grammar:

$$
e \rightarrow a \in \Sigma|\epsilon| \emptyset\left|e_{1}+e_{2}\right| e_{1} \cdot e_{2} \mid e^{*}
$$

The set of all regular expressions is non-regular.
12. If L is regular, so is L^{R}.
13. A parse tree uniquely defines a derivation.
14. A context-free language is unambiguous iff every contextfree grammar of the language is unambiguous.
15. The language of balanced parentheses

$$
\{\epsilon,(),()(),(()),(()()), \ldots\}
$$

is defined by the following context-free grammar:

$$
S \rightarrow \epsilon|(S)| S S
$$

