Final Exam
 COSE215, Spring 2017

Instructor: Hakjoo Oh

Problem 1. (6pts) Draw a Venn-diagram to illustrate the relationships between the following classes of languages:

- $R E$: the set of recursively-enumerable languages
- Decidable: the set of decidable languages
- Regular: the set of regular languages
- CFL: the set of context-free languages

Problem 2. (14pts) Define the languages accepted by the PDA:

1. (7pts) $P\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\left\{a, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{3}\right\}\right)$

$$
\begin{aligned}
\delta\left(q_{0}, a, Z_{0}\right) & =\left\{\left(q_{1}, a Z_{0}\right)\right\} \\
\delta\left(q_{1}, a, a\right) & =\left\{\left(q_{1}, a a\right)\right\} \\
\delta\left(q_{1}, b, a\right) & =\left\{\left(q_{2}, \epsilon\right)\right\} \\
\delta\left(q_{2}, b, a\right) & =\left\{\left(q_{2}, \epsilon\right)\right\} \\
\delta\left(q_{2}, b, Z_{0}\right) & =\left\{\left(q_{3}, Z_{0}\right)\right\} \\
\delta\left(q_{3}, b, Z_{0}\right) & =\left\{\left(q_{3}, Z_{0}\right)\right\}
\end{aligned}
$$

2. (7pts) $P=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\left\{a, Z_{0}\right\}, \delta, q_{0}, Z_{0},\left\{q_{2}\right\}\right)$

$$
\begin{aligned}
\delta\left(q_{0}, a, Z_{0}\right) & =\left\{\left(q_{0}, a a Z_{0}\right)\right\} \\
\delta\left(q_{0}, a, a\right) & =\left\{\left(q_{0}, a a a\right)\right\} \\
\delta\left(q_{0}, b, a\right) & =\left\{\left(q_{1}, \epsilon\right)\right\} \\
\delta\left(q_{1}, b, a\right) & =\left\{\left(q_{1}, \epsilon\right)\right\} \\
\delta\left(q_{1}, \epsilon, Z_{0}\right) & =\left\{\left(q_{2}, Z_{0}\right)\right\}
\end{aligned}
$$

Problem 3. (20pts) Define the languages accepted by the Turing machines.

1. (10pts) $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B,\left\{q_{f}\right\}\right)$ where

- $Q=\left\{q_{0}, q_{a}, q_{b}, q_{c}, q_{Y}, q_{Z}, q_{f}\right\}$
- $\Sigma=\{a, b, c\}$
- $\Gamma=\{a, b, c, X, Y, Z, B\}$
- δ :

$$
\begin{aligned}
& \delta\left(q_{0}, a\right)=\left(q_{a}, X, R\right) \quad \delta\left(q_{0}, Y\right)=\left(q_{Y}, Y, R\right) \\
& \delta\left(q_{a}, a\right)=\left(q_{a}, a, R\right) \quad \delta\left(q_{a}, b\right)=\left(q_{b}, Y, R\right) \\
& \delta\left(q_{a}, Y\right)=\left(q_{a}, Y, R\right) \quad \delta\left(q_{b}, b\right)=\left(q_{b}, b, R\right) \\
& \delta\left(q_{b}, c\right)=\left(q_{c}, Z, L\right) \quad \delta\left(q_{b}, Z\right)=\left(q_{b}, Z, R\right) \\
& \delta\left(q_{c}, a\right)=\left(q_{c}, a, L\right) \quad \delta\left(q_{c}, b\right)=\left(q_{c}, b, L\right) \\
& \delta\left(q_{c}, X\right)=\left(q_{0}, X, R\right) \quad \delta\left(q_{c}, Y\right)=\left(q_{c}, Y, L\right) \\
& \delta\left(q_{c}, Z\right)=\left(q_{c}, Z, L\right) \quad \delta\left(q_{Y}, Y\right)=\left(q_{Y}, Y, R\right) \\
& \delta\left(q_{Y}, Z\right)=\left(q_{Z}, Z, R\right) \quad \delta\left(q_{Z}, Z\right)=\left(q_{Z}, Z, R\right) \\
& \delta\left(q_{Z}, B\right)=\left(q_{f}, B, R\right)
\end{aligned}
$$

2. (10pts) $M=\left(Q, \Sigma, \Gamma, \delta, q_{i}, B,\left\{q_{f}\right\}\right)$ where

- $Q=\left\{q_{i}, q_{0}, q_{1}, q_{2}, q_{3}, q_{b}, q_{f}\right\}$
- $\Sigma=\{0,1\}$
- $\Gamma=\{0,1, B\}$
- δ :

$\delta\left(q_{i}, 0\right)$	$=$	$\left(q_{0}, B, R\right)$	$\delta\left(q_{i}, 1\right)$		$\left(q_{1}, B, R\right)$
$\delta\left(q_{i}, B\right)$	=	$\left(q_{f}, B, R\right)$	$\delta\left(q_{0}, 0\right)$	=	$\left(q_{0}, 0, R\right)$
$\delta\left(q_{0}, 1\right)$	=	$\left(q_{0}, 1, R\right)$	$\delta\left(q_{0}, B\right)$	=	$\left(q_{2}, B, L\right)$
$\delta\left(q_{1}, 0\right)$	$=$	$\left(q_{1}, 0, R\right)$	$\delta\left(q_{1}, 1\right)$	$=$	$\left(q_{1}, 1, R\right)$
$\delta\left(q_{1}, B\right)$	=	$\left(q_{3}, B, L\right)$	$\delta\left(q_{2}, 0\right)$	$=$	$\left(q_{b}, B, L\right)$
$\delta\left(q_{3}, 1\right)$		$\left(q_{b}, B, L\right)$	$\delta\left(q_{b}, 0\right)$		$\left(q_{b}, 0, L\right)$
$\delta\left(q_{b}, 1\right)$	$=$	$\left(q_{b}, 1, L\right)$	$\delta\left(q_{b}, B\right)$	$=$	$\left(q_{i}, B, R\right)$

Problem 4. (60pts) True/False questions. (Do not answer when you are uncertain; A correct answer gets you 2 points but you lose 2 points for each wrong answer.)

1. $L=\left\{a^{n} b^{m} \mid n, m \geq 0\right\}$ is regular.
2. $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is context-free but not regular.
3. $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free but decidable.
4. $L=\left\{a^{m} b^{m} c^{n} d^{n} \mid m, n \geq 0\right\}$ is context-free.
5. $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is context-free.
6. $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is context-free.
7. $L=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$ is deterministic context-free.
8. $L=\left\{w c w \mid w \in\{0,1\}^{+}\right\}$is context-free.
9. $L=\left\{w c w^{R} \mid w \in\{0,1\}^{+}\right\}$is context-free.
10. $L=\left\{w c w^{R} \mid w \in\{0,1\}^{+}\right\}$is deterministic contextfree.
11. $L=\{w| | w \mid=2 k$ for some $k\}$ is recursive.
12. $L=\left\{w \in\{a, b, c\}^{*} \mid n_{a}(w)=n_{b}(w)=n_{c}(w)\right\}$ is context-free.
13. $L=\left\{a^{n^{2}} \mid n \geq 0\right\}$ is context-free.
14. Intersection with a context-free language and a regular language always produces a regular language.
15. For any CFL L, L^{*} is context-free.
16. We can use the pumping lemma for context-free languages to show that some language not to be regular.
17. Pushdown automata with two stacks are as powerful as Turing machines.
18. Pushdown automata with a single queue is as powerful as Turing machines.
19. The grammar

$$
S \rightarrow T A|b A| A b|b, \quad A \rightarrow A a| a, \quad T \rightarrow A b
$$

is in Chomsky Normal Form.
20. The grammar

$$
S \rightarrow a X b X, \quad X \rightarrow a Y|b Y| \epsilon, \quad Y \rightarrow X \mid c
$$

has two nullable variables.
21. Let $G=(V, T, S, P)$ be a CFG. The set of unit pairs is defined as the smallest set X such that $X=F(X)$, where $F(X)=\{(A, A) \mid A \in V\} \cup\{(A, C) \mid(A, B) \in$ $X, B \rightarrow C \in P\}$.
22. The problem of removing ambiguity from a context-free language is in the NP class.
23. With multitape Turing machine, it is possible to decide the language $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ in linear time.
24. Nondeterministic Turing machines have the same expressiveness as the standard Turing machines.
25. There is a problem solvable by Turing machines with two tapes but unsolvable by Turing machines with a single tape.
26. The language $L=\{\langle M, w\rangle \mid M$ halts on input $w\}$ is recursively enumerable.
27. The language $L=\{\langle M, w\rangle \mid M$ halts on input $w\}$ is recursive.
28. The boolean formula $x \wedge \neg(y \vee z)$ is satisfiable.
29. NP-Complete problems cannot be solved by Turing machines.
30. When there is a polynomial-time reduction from L_{1} to L_{2} (i.e. $L_{1} \leq_{P} L_{2}$), L_{1} is harder than L_{2} to solve.

